
GLOBAL OPTIMIZATION
USING INTERVAL ANALYSIS
Second Edition, Revised and Expanded

ELDONHANSEN
Consultant
Los Altos, California

G. WILLIAM WALSTER
Sun Microsystems Laboratories
Mountain View, California, U.S.A.

MARCEL DEKKER, INC. NEW YORK • BASEL

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The first edition was Global Optimization Using Interval Analysis, Eldon Hansen, ed. (Marcel
Dekker, 1992).

Although great care has been taken to provide accurate and current information, neither the
author(s) nor the publisher, nor anyone else associated with this publication, shall be liable for
any loss, damage, or liability directly or indirectly caused or alleged to be caused by this book.
The material contained herein is not intended to provide specific advice or recommendations for
any specific situation.

Trademark notice: Product or corporate names may be trademarks or registered trademarks and
are used only for identification and explanation without intent to infringe.

Sun, Sun Microsystems, the Sun Logo, and Forte are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress.

ISBN: 0-8247-4059-9

This book is printed on acid-free paper.

Headquarters
Marcel Dekker, Inc., 270 Madison Avenue, New York, NY 10016, U.S.A.
tel: 212-696-9000; fax: 212-685-4540

Distribution and Customer Service
Marcel Dekker, Inc., Cimarron Road, Monticello, New York 12701, U.S.A.
tel: 800-228-1160; fax: 845-796-1772

Eastern Hemisphere Distribution
Marcel Dekker AG, Hutgasse 4, Postfach 812, CH–4001 Basel, Switzerland
tel: 41-61-260-6300; fax: 41-61-260-6333

World Wide Web: http://www.dekker.com

The publisher offers discounts on this book when ordered in bulk quantities. For more informa-
tion, write to Special Sales/Professional Marketing at the headquarters address above.

Copyright © 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.
All Rights Reserved.

Neither this book nor any part may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, microfilming, and recording, or by any infor-
mation storage and retrieval system, without permission in writing from the publisher.

Current printing (last digit):

CR/SH 10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

PURE AND APPLIED MATHEMATICS

A Program of Monographs, Textbooks, and Lecture Notes

EXECUTIVE EDITORS

Earl J. Taft Zuhair Nashed
Rutgers University University of Delaware

New Brunswick, New Jersey Newark, Delaware

EDITORIAL BOARD

M. S. Baouendi Anil Nerode
University of California, Cornell University

San Diego
Donald Passman

Jane Cronin University of Wisconsin,
Rutgers University Madison

Jack K. Hale Fred S. Roberts
Georgia Institute of Technology Rutgers University

S. Kobayashi David L. Russell
University of California, Virginia Polytechnic Institute

Berkeley and State University

Marvin Marcus Walter Schempp
University of California, Universitat Siegen

Santa Barbara
Mark Teply

W. S. Massey University of Wisconsin,
Yale University Milwaukee

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

MONOGRAPHS AND TEXTBOOKS IN
PURE AND APPLIED MATHEMATICS

1. K. Yano, Integral Formulas in Riemannian Geometry (1970)
2. S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings (1970)
3. V, S, Vladimirov, Equations of Mathematical Physics (A. Jeffrey, ed.; A. Littlewood,

trans.) (1970)
4. B. N. Pshenichnyi, Necessary Conditions for an Extremum (L. Neustadt, translation

ed.; K. Makowski, trans.) (1971)
5. L. Naricietal., Functional Analysis and Valuation Theory (1971)
6. S. S. Passman, Infinite Group Rings (1971)
7. L. Domhoff, Group Representation Theory. Part A: Ordinary Representation Theory.

Part B: Modular Representation Theory (1971, 1972)
8. W. Boothbyand G. L Weiss, eds., Symmetric Spaces (1972)
9. Y. Matsushima, Differentiate Manifolds (E. T. Kobayashi, trans.) (1972)

10. L. E. Ward, Jr., Topology (1972)
11. A. Babakhanian, Cohomological Methods in Group Theory (1972)
12. R. Gilmer, Multiplicative Ideal Theory (1972)
13. J. Yeh, Stochastic Processes and the Wiener Integral (1973)
14. J. Barros-Neto, Introduction to the Theory of Distributions (1973)
15. R. Larsen, Functional Analysis (1973)
16. K. Yano and S. Ishihara, Tangent and Cotangent Bundles (1973)
17. C. Procesi, Rings with Polynomial Identities (1973)
18. R. Hermann, Geometry, Physics, and Systems (1973)
19. N. R. Wallach, Harmonic Analysis on Homogeneous Spaces (1973)
20. J. Dieudonne, Introduction to the Theory of Formal Groups (1973)
21. /. Vaisman, Cohomology and Differential Forms (1973)
22. B.-Y. Chen, Geometry of Submanifolds (1973)
23. M. Marcus, Finite Dimensional Multilinear Algebra (in two parts) (1973,1975)
24. R. Larsen, Banach Algebras (1973)
25. R. O. Kujala and A. L. Vitter, eds., Value Distribution Theory: Part A; Part B: Deficit

and Bezout Estimates by Wilhelm Stoll (1973)
26. K. B. Stolarsky, Algebraic Numbers and Diophantine Approximation (1974)
27. A. R. Magid, The Separable Galois Theory of Commutative Rings (1974)
28. B. R. McDonald, Finite Rings with Identity (1974)
29. J. Satake, Linear Algebra (S. Koh et al., trans.) (1975)
30. J. S. Golan, Localization of Noncommutative Rings (1975)
31. G. Klambauer, Mathematical Analysis (1975)
32. M. K. Agoston, Algebraic Topology (1976)
33. K. R. Goodearl, Ring Theory (1976)
34. L. E. Mansfield, Linear Algebra with Geometric Applications (1976)
35. N. J. Pullman, Matrix Theory and Its Applications (1976)
36. B. R. McDonald, Geometric Algebra Over Local Rings (1976)
37. C. W. Groetsch, Generalized Inverses of Linear Operators (1977)
38. J. E. Kuczkowski and J. L Gersting, Abstract Algebra (1977)
39. C. O. Christenson and W. L. Voxman, Aspects of Topology (1977)
40. M. Nagata, Field Theory (1977)
41. R. L. Long, Algebraic Number Theory (1977)
42. W. F. Pfeffer, Integrals and Measures (1977)
43. R. L Wheeden and A. Zygmund, Measure and Integral (1977)
44. J. H. Curtiss, Introduction to Functions of a Complex Variable (1978)
45. K. Hrbacek and T. Jech, Introduction to Set Theory (1978)
46. W. S. Massey, Homology and Cohomology Theory (1978)
47. M. Marcus, Introduction to Modern Algebra (1978)
48. E. C. Young, Vector and Tensor Analysis (1978)
49. S. B. Nadler, Jr., Hyperspaces of Sets (1978)
50. S. K. Segal, Topics in Group Kings (1978)
51. A. C. M. van Rooij, Non-Archimedean Functional Analysis (1978)
52. L. Corwin and R. Szczarba, Calculus in Vector Spaces (1979)
53. C. Sadosky, Interpolation of Operators and Singular Integrals (1979)
54. J. Cronin, Differential Equations (1980)
55. C. W. Groetsch, Elements of Applicable Functional Analysis (1980)Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

56. /. Vaisman, Foundations of Three-Dimensional Euclidean Geometry (1980)
57. H. I. Freedan, Deterministic Mathematical Models in Population Ecology (1980)
58. S. B. Chae, Lebesgue Integration (1980)
59. C. S. Reeset a/., Theory and Applications of Fourier Analysis (1981)
60. L Nachbin, Introduction to Functional Analysis (R. M. Aron, trans.) (1981)
61. G. Orzech and M. Orzech, Plane Algebraic Curves (1981)
62. R. Johnsonbaugh and W. E. Pfaffenberger, Foundations of Mathematical Analysis

(1981)
63. W. L Voxman and R. H. Goetschel, Advanced Calculus (1981)
64. L J. Corwin and R. H. Szczarba, Multivariable Calculus (1982)
65. V. I. Istratescu, Introduction to Linear Operator Theory (1981)
66. R. D. Jarvinen, Finite and Infinite Dimensional Linear Spaces (1981)
67. J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry (1981)
68. D. L. Armacost, The Structure of Locally Compact Abelian Groups (1981)
69. J. W. Brewerand M. K. Smith, eds., Emmy Noether: A Tribute (1981)
70. K. H. Kim, Boolean Matrix Theory and Applications (1982)
71. T. W. Wieting, The Mathematical Theory of Chromatic Plane Ornaments (1982)
72. D. B.Gauld, Differential Topology (1982)
73. R. L. Faber, Foundations of Euclidean and Non-Euclidean Geometry (1983)
74. M. Catmeli, Statistical Theory and Random Matrices (1983)
75. J. H. Canvth et at., The Theory of Topological Semigroups (1983)
76. R. L. Faber, Differential Geometry and Relativity Theory (1983)
77. S. Bamett, Polynomials and Linear Control Systems (1983)
78. G. Karpilovsky, Commutative Group Algebras (1983)
79. F. Van Oystaeyen and A. Verschoren, Relative Invariants of Rings (1983)
80. /. Vaisman, A First Course in Differential Geometry (1984)
81. G. W. Swan, Applications of Optimal Control Theory in Biomedicine (1984)
82. T. Petrie and J. D. Randall, Transformation Groups on Manifolds (1984)
83. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive

Mappings (1984)
84. T. Albu and C. Nastasescu, Relative Finiteness in Module Theory (1984)
85. K, Hrbacek and T. Jech, Introduction to Set Theory: Second Edition (1984)
86. F. Van Oystaeyen and A. Verschoren, Relative Invariants of Rings (1984)
87. B. R. McDonald, Linear Algebra Over Commutative Rings (1984)
88. M. Namba, Geometry of Projective Algebraic Curves (1984)
89. G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics (1985)
90. M. R. Bremner et a/., Tables of Dominant Weight Multiplicities for Representations of

Simple Lie Algebras (1985)
91. A. E. Fekete, Real Linear Algebra (1985)
92. S. B. Chae, Holomorphy and Calculus in Normed Spaces (1985)
93. A. J. Jerri, Introduction to Integral Equations with Applications (1985)
94. G. Karpilovsky, Projective Representations of Finite Groups (1985)
95. L. Narici and E. Beckenstein, Topological Vector Spaces (1985)
96. J. Weeks, The Shape of Space (1985)
97. P. R. Gribik and K. O. Kortanek, Extremal Methods of Operations Research (1985)
98. J.-A. Chao and W. A. Woyczynski, eds., Probability Theory and Harmonic Analysis

(1986)
99. G. D. Crown et a/., Abstract Algebra (1986)

100. J. H. Carruth et a/., The Theory of Topological Semigroups, Volume 2 (1986)
101. R. S. Doran and V. A. Belfi, Characterizations of C*-Algebras (1986)
102. M. W. Jeter, Mathematical Programming (1986)
103. M. Altman, A Unified Theory of Nonlinear Operator and Evolution Equations with

Applications (1986)
104. A. Verschoren, Relative Invariants of Sheaves (1987)
105. R. A. Usmani, Applied Linear Algebra (1987)
106. P. Blass and J. Lang, Zariski Surfaces and Differential Equations in Characteristic p >

0(1987)
107. J. A. Reneke et a/., Structured Hereditary Systems (1987)
108. H. Busemann and B. B. Phadke, Spaces with Distinguished Geodesies (1987)
109. R. Harte, Invertibility and Singularity for Bounded Linear Operators (1988)
110. G. S. Ladde et a/., Oscillation Theory of Differential Equations with Deviating Argu-

ments (1987)
111. L. Dudkin et a/., Iterative Aggregation Theory (1987)
112. T. Okubo, Differential Geometry (1987)Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

113. D. L Stand and M. L Stand, Real Analysis with Point-Set Topology (1987)
114. T. C. Gard, Introduction to Stochastic Differential Equations (1988)
115. S. S. Abhyankar, Enumerative Combinatorics of Young Tableaux (1988)
116. H. Strade and R. Farnsteiner, Modular Lie Algebras and Their Representations (1988)
117. J. A. Huckaba, Commutative Rings with Zero Divisors (1988)
118. W. D. Wallis, Combinatorial Designs (1988)
119. W. Wieslaw, Topological Fields (1988)
120. G. Karpilovsky, Field Theory (1988)
121. S. Caenepeel and F. Van Oystaeyen, Brauer Groups and the Cohomology of Graded

Rings (1989)
122. W. Kozlowski, Modular Function Spaces (1988)
123. E. Lowen-Colebunders, Function Classes of Cauchy Continuous Maps (1989)
124. M. Pavel, Fundamentals of Pattern Recognition (1989)
125. V. Lakshmikantham et al., Stability Analysis of Nonlinear Systems (1989)
126. R. Sivaramakrishnan, The Classical Theory of Arithmetic Functions (1989)
127. N. A. Watson, Parabolic Equations on an Infinite Strip (1989)
128. K. J. Hastings, Introduction to the Mathematics of Operations Research (1989)
129. 6. Fine, Algebraic Theory of the Bianchi Groups (1989)
130. D. N. Dikranjan et al., Topological Groups (1989)
131. J. C. Morgan II, Point Set Theory (1990)
132. P. BilerandA. Witkowski, Problems in Mathematical Analysis (1990)
133. H. J. Sussmann, Nonlinear Controllability and Optimal Control (1990)
134. J.-P. Florens et a/., Elements of Bayesian Statistics (1990)
135. N. Shell, Topological Fields and Near Valuations (1990)
136. 6. F. Doolin and C. F. Martin, Introduction to Differential Geometry for Engineers

(1990)
137. S. S. Holland, Jr., Applied Analysis by the Hilbert Space Method (1990)
138. J. Okninski, Semigroup Algebras (1990)
139. K. Zhu, Operator Theory in Function Spaces (1990)
140. G. 8. Price, An Introduction to Multicomplex Spaces and Functions (1991)
141. R. B. Darst, Introduction to Linear Programming (1991)
142. P. L. Sachdev, Nonlinear Ordinary Differential Equations and Their Applications (1991)
143. T. Husain, Orthogonal Schauder Bases (1991)
144. J. Foran, Fundamentals of Real Analysis (1991)
145. W. C. Brown, Matrices and Vector Spaces (1991)
146. M. M. RaoandZ. D. Ren, Theory of Orlicz Spaces (1991)
147. J. S. Golan and T. Head, Modules and the Structures of Rings (1991)
148. C. Small, Arithmetic of Finite Fields (1991)
149. K. Yang, Complex Algebraic Geometry (1991)
150. D. G. Hoffman et al., Coding Theory (1991)
151. M. O. Gonzalez, Classical Complex Analysis (1992)
152. M. O. Gonzalez, Complex Analysis (1992)
153. L W. Baggett, Functional Analysis (1992)
154. M. Sniedovich, Dynamic Programming (1992)
155. R. P. Agarwal, Difference Equations and Inequalities (1992)
156. C. Brezinski, Biorthogonality and Its Applications to Numerical Analysis (1992)
157. C. Swartz, An Introduction to Functional Analysis (1992)
158. S. B. Nadler, Jr., Continuum Theory (1992)
159. M. A. AI-Gwaiz, Theory of Distributions (1992)
160. E. Perry, Geometry: Axiomatic Developments with Problem Solving (1992)
161. E. Castillo and M. R. Ruiz-Cobo, Functional Equations and Modelling in Science and

Engineering (1992)
162. A. J. Jerri, Integral and Discrete Transforms with Applications and Error Analysis

(1992)
163. A. Charlieret al., Tensors and the Clifford Algebra (1992)
164. P. Bilerand T. Nadzieja, Problems and Examples in Differential Equations (1992)
165. E. Hansen, Global Optimization Using Interval Analysis (1992)
166. S. Guerre-Delabriere, Classical Sequences in Banach Spaces (1992)
167. Y. C. Wong, Introductory Theory of Topological Vector Spaces (1992)
168. S. H. KulkamiandB. V. Limaye, Real Function Algebras (1992)
169. W. C. Brown, Matrices Over Commutative Rings (1993)
170. J. Loustau and M. Dillon, Linear Geometry with Computer Graphics (1993)
171. W. V. Petryshyn, Approximation-Solvability of Nonlinear Functional and Differential

Equations (1993)Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

172. E. C. Young, Vector and Tensor Analysis: Second Edition (1993)
173. T. A. Bick, Elementary Boundary Value Problems (1993)
174. M. Pavel, Fundamentals of Pattern Recognition: Second Edition (1993)
175. S. A. Albeverio et a/., Noncommutative Distributions (1993)
176. W. Fulks, Complex Variables (1993)
177. M. M. Rao, Conditional Measures and Applications (1993)
178. A. Janicki and A. Weron, Simulation and Chaotic Behavior of cc-Stable Stochastic

Processes (1994)
179. P. Neittaanmaki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems (1994)
180. J. Cronin, Differential Equations: Introduction and Qualitative Theory, Second Edition

(1994)
181. S. Heikkila and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous

Nonlinear Differential Equations (1994)
182. X. Mao, Exponential Stability of Stochastic Differential Equations (1994)
183. B. S. Thomson, Symmetric Properties of Real Functions (1994)
184. J. E. Rubio, Optimization and Nonstandard Analysis (1994)
185. J. L. Bueso et a/., Compatibility, Stability, and Sheaves (1995)
186. A. N. Michel and K. Wang, Qualitative Theory of Dynamical Systems (1995)
187. M. R. Darnel, Theory of Lattice-Ordered Groups (1995)
188. Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational

Inequalities and Applications (1995)
189. L. J. Corwin and R. H. Szczarba, Calculus in Vector Spaces: Second Edition (1995)
190. L. H. Erbe et a/., Oscillation Theory for Functional Differential Equations (1995)
191. S. Agaian etal., Binary Polynomial Transforms and Nonlinear Digital Filters (1995)
192. M. I. Gil', Norm Estimations for Operation-Valued Functions and Applications (1995)
193. P. A. Grillet, Semigroups: An Introduction to the Structure Theory (1995)
194. S. Kichenassamy, Nonlinear Wave Equations (1996)
195. V. F. Krotov, Global Methods in Optimal Control Theory (1996)
196. K. /. Beidaret a/., Rings with Generalized Identities (1996)
197. V. I. Amautov et a/., Introduction to the Theory of Topological Rings and Modules

(1996)
198. G. Sierksma, Linear and Integer Programming (1996)
199. R. Lasser, Introduction to Fourier Series (1996)
200. V. Sima, Algorithms for Linear-Quadratic Optimization (1996)
201. D. Redmond, Number Theory (1996)
202. J. K. Beem et a/., Global Lorentzian Geometry: Second Edition (1996)
203. M. Fontana et at., Priifer Domains (1997)
204. H. Tanabe, Functional Analytic Methods for Partial Differential Equations (1997)
205. C. Q. Zhang, Integer Flows and Cycle Covers of Graphs (1997)
206. E. Spiegel and C. J. O'Donnell, Incidence Algebras (1997)
207. B. Jakubczyk and W. Respondek, Geometry of Feedback and Optimal Control (1998)
208. T. W. Waynes ef a/., Fundamentals of Domination in Graphs (1998)
209. T. W. Haynes et a/., eds., Domination in Graphs: Advanced Topics (1998)
210. L A. D'Alotto et a/., A Unified Signal Algebra Approach to Two-Dimensional Parallel

Digital Signal Processing (1998)
211. F. Halter-Koch, Ideal Systems (1998)
212. N. K. Govil et a/., eds., Approximation Theory (1998)
213. R. Cross, Multivalued Linear Operators (1998)
214. A. A. Martynyuk, Stability by Liapunov's Matrix Function Method with Applications

(1998)
215. A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces (1999)
216. A. /Wanes and S. Nadler, Jr., Hyperspaces: Fundamentals and Recent Advances

(1999)
217. G. Kato and D. Struppa, Fundamentals of Algebraic Microlocal Analysis (1999)
218. G. X.-Z. Yuan, KKM Theory and Applications in Nonlinear Analysis (1999)
219. D. Motreanu and N. H. Pavel, Tangency, Flow Invariance for Differential Equations,

and Optimization Problems (1999)
220. K. Hrbacek and T. Jech, Introduction to Set Theory, Third Edition (1999)
221. G. E. Kolosov, Optimal Design of Control Systems (1999)
222. N. L Johnson, Subplane Covered Nets (2000)
223. B. Fine and G. Rosenberger, Algebraic Generalizations of Discrete Groups (1999)
224. M. Vath, Volterra and Integral Equations of Vector Functions (2000)
225. S. S. Miller and P. T. Mocanu, Differential Subordinations (2000)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

226. R. Li et a/., Generalized Difference Methods for Differential Equations: Numerical
Analysis of Finite Volume Methods (2000)

227. H. Li and F. Van Oystaeyen, A Primer of Algebraic Geometry (2000)
228. R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and Applica-

tions, Second Edition (2000)
229. A. B. Kharazishvili, Strange Functions in Real Analysis (2000)
230. J. M. Appell et a/., Partial Integral Operators and Integra-Differential Equations (2000)
231. A. I. Prilepko et a/., Methods for Solving Inverse Problems in Mathematical Physics

(2000)
232. F. Van Oystaeyen, Algebraic Geometry for Associative Algebras (2000)
233. D. L Jagerman, Difference Equations with Applications to Queues (2000)
234. D. R. Hankerson et a/., Coding Theory and Cryptography: The Essentials, Second

Edition, Revised and Expanded (2000)
235. S. Dascalescueta/., Hopf Algebras: An Introduction (2001)
236. R. Hagen et a/., C*-Algebras and Numerical Analysis (2001)
237. Y. Talpaert, Differentia! Geometry: With Applications to Mechanics and Physics (2001)
238. R. H. Villarreal, Monomial Algebras (2001)
239. A. N. Michel et a/., Qualitative Theory of Dynamical Systems: Second Edition (2001)
240. A. A. Samarskii, The Theory of Difference Schemes (2001)
241. J. Knopfmacher and W.-B. Zhang, Number Theory Arising from Finite Fields (2001)
242. S. Leader, The Kurzweil-Henstock Integral and Its Differentials (2001)
243. M. Biliotti et a/., Foundations of Translation Planes (2001)
244. A. N. Kochubei, Pseudo-Differential Equations and Stochastics over Non-Archimedean

Fields (2001)
245. G. Sierksma, Linear and Integer Programming: Second Edition (2002)
246. A. A. Martynyuk, Qualitative Methods in Nonlinear Dynamics: Novel Approaches to

Liapunov's Matrix Functions (2002)
247. B. G. Pachpatte, Inequalities for Finite Difference Equations (2002)
248. A. N. Michel and D. Liu, Qualitative Analysis and Synthesis of Recurrent Neural Net-

works (2002)
249. J. R. Weeks, The Shape of Space: Second Edition (2002)
250. M. M. Rao and Z. D. Ren, Applications of Orlicz Spaces (2002)
251. V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical

Methods and Applications, Second Edition (2002)
252. T. Albu, Cogalois Theory (2003)
253. A. Bezdek, Discrete Geometry (2003)
254. M, J. Cortess and A. E. Frazho, Linear Systems and Control: An Operator Per-

spective (2003)
255. /. Graham and G. Kohr, Geometric Function Theory in One and Higher Dimensions

(2003)
256. G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems Not

Solvable with Respect to the Highest-Order Derivative (2003)
257. A. Kelarev, Graph Algebras and Automata (2003)
258. A. H. Siddiqi, Applied Functional Analysis: Numerical Methods, Wavelet Methods,

and Image Processing (2004)
259. F. W. Steutel and K. van Ham, Infinite Divisibility of Probability Distributions on the

Real Line (2004)
260. G. S. Ladde and M. Sambandham, Stochastic Versus Deterministic Systems of Dif-

ferential Equations (2004)
261. B. J. Gardner and R. Wiegandt, Radical Theory of Rings (2004)
262. J. Haluska, The Mathematical Theory of Tone Systems (2004)
263. C. Menini and F. Van Oystaeyen, Abstract Algebra: A Comprehensive Treatment

(2004)
264. E. Hansen and G. W. Walster, Global Optimization Using Interval Analysis: Second

Edition, Revised and Expanded (2004)
265. M. M. Rao, Measure Theory and Integration, Second Edition, Revised and Ex-

panded

Additional Volumes in Preparation

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

To Cecelia and Kaye

for their love and support.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Foreword

Take note, mathematicians. Here you will find a new extension of real
arithmetic to interval arithmetic for containment sets (csets) in which there
are no undefined operand-operator combinations such as previously “inde-
terminate forms” 0/0, ∞ − ∞, etc.

Take note, hardware and software engineers, programmers and
computer users. Here you will find arithmetic with containment sets which
is exception free, so exception event handling is unnecessary.

The main content of the volume consists of interval algorithms for
computing guaranteed enclosures of the sets of points where constrained
global optimization occurs. The use of interval methods provides com-
putational proofs of existence and location of global optima. Computer
software implementations use outwardly rounded interval (cset) arithmetic
to guarantee that even rounding errors are bounded in the computations.
The results are mathematically rigorous.

Computer-aided proofs of theorems and long-standing conjectures in
analysis have been carried out using outwardly rounded interval arithmetic,
including, for example, the Kepler conjecture — finally proved after 300
years. See “Perspectives on Enclosure Methods”, U. Kulisch, R. Lohner
and A. Fascius (eds.), Springer, 2001.

The earlier edition [Global Optimization Using Interval Analysis, El-
don Hansen, Marcel Dekker, Inc, 1992] has been expanded also by more
recently developed methods and algorithms for global optimization prob-
lems with either (or both) inequality and equality constraints. In particular,
constraint satisfaction and propagation techniques, using interval intersec-
tions for instance, discussed in the new chapter on “consistencies”, are
integrated with Newton-like interval methods, in a step towards bridging

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

the gap between methods that work well “in the large” and those that work
well “in the small”.

I wholeheartedly endorse this important new volume, and recommend
its serious study by all who are concerned with global optimization.

Ramon Moore

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Contents

Foreword

Preface

1 INTRODUCTION
1.1 AN OVERVIEW
1.2 THE ORIGIN OF INTERVAL ANALYSIS
1.3 THE SCOPE OF THIS BOOK
1.4 VIRTUESAND DRAWBACKS OF INTERVAL MATH-

EMATICS
1.4.1 Rump’s Example
1.4.2 Real Examples
1.4.3 Ease of Use
1.4.4 Performance Benchmarks
1.4.5 Interval Virtues

1.5 THE FUTURE OF INTERVALS

2 INTERVAL NUMBERS AND ARITHMETIC
2.1 INTERVAL NUMBERS
2.2 NOTATION AND RELATIONS
2.3 FINITE INTERVAL ARITHMETIC
2.4 DEPENDENCE

2.4.1 Dependent Interval Arithmetic Operations
2.5 EXTENDED INTERVAL ARITHMETIC

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

3 FUNCTIONS OF INTERVALS
3.1 REAL FUNCTIONS OF INTERVALS
3.2 INTERVAL FUNCTIONS
3.3 THE FORMS OF INTERVAL FUNCTIONS
3.4 SPLITTING INTERVALS
3.5 ENDPOINT ANALYSIS
3.6 MONOTONIC FUNCTIONS
3.7 PRACTICAL EVALUATION OF INTERVAL FUNCTIONS
3.8 THICK AND THIN FUNCTIONS

4 CLOSED INTERVAL SYSTEMS
4.1 INTRODUCTION
4.2 CLOSED SYSTEM BENEFITS

4.2.1 Generality
4.2.2 Speed and Width

4.3 THE SET FOUNDATION FOR CLOSED INTERVAL
SYSTEMS

4.4 THE CONTAINMENT CONSTRAINT
4.4.1 The Finite Interval Containment Constraint
4.4.2 The (Extended) Containment Constraint

4.5 THE (EXTENDED) CONTAINMENT SET
4.5.1 Historical Context
4.5.2 A Simple Example: 1

0

4.5.3 Cset Notation
4.5.4 The Containment Set of 1

0
4.6 ARITHMETIC OVERTHE EXTENDED REAL NUM-

BERS
4.6.1 Empty Sets and Intervals
4.6.2 Cset-Equivalent Expressions

4.7 CLOSED INTERVAL SYSTEMS
4.7.1 Closed Interval Algorithm Operations

4.8 EXTENDED FUNDAMENTAL THEOREM
4.8.1 Containment Sets and Topological Closures
4.8.2 Multi-Valued Expressions
4.8.3 Containment-Set Inclusion Isotonicity

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

4.8.4 Fundamental Theorem of Interval Analysis
4.8.5 Continuity

4.9 VECTOR AND MATRIX NOTATION
4.10 CONCLUSION

5 LINEAR EQUATIONS
5.1 DEFINITIONS
5.2 INTRODUCTION
5.3 THE SOLUTION SET
5.4 GAUSSIAN ELIMINATION
5.5 FAILURE OF GAUSSIAN ELIMINATION
5.6 PRECONDITIONING
5.7 THE GAUSS-SEIDEL METHOD
5.8 THE HULL METHOD

5.8.1 Theoretical Algorithm
5.8.2 Practical Procedure

5.9 COMBINING GAUSS-SEIDEL AND HULL METHODS
5.10 THE HULL OF THE SOLUTION SET OF AIx = bI

5.11 A SPECIAL PRECONDITIONING MATRIX
5.12 OVERDETERMINED SYSTEMS

6 INEQUALITIES
6.1 INTRODUCTION
6.2 A SINGLE INEQUALITY
6.3 SYSTEMS OF INEQUALITIES
6.4 ORDERING INEQUALITIES
6.5 SECONDARY PIVOTS
6.6 COLUMN INTERCHANGES .
6.7 THE PRECONDITIONING MATRIX
6.8 SOLVING INEQUALITIES

7 TAYLOR SERIES AND SLOPE EXPANSIONS
7.1 INTRODUCTION
7.2 BOUNDING THE REMAINDER IN TAYLOR EX-

PANSIONS
7.3 THE MULTIDIMENSIONAL CASE

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

7.4 THE JACOBIAN AND HESSIAN
7.5 AUTOMATIC DIFFERENTIATION
7.6 SHARPER BOUNDS USING TAYLOR EXPANSIONS
7.7 EXPANSIONS USING SLOPES
7.8 SLOPES FOR IRRATIONAL FUNCTIONS
7.9 MULTIDIMENSIONAL SLOPES
7.10 HIGHER ORDER SLOPES
7.11 SLOPE EXPANSIONS OF NONSMOOTH FUNCTIONS
7.12 AUTOMATIC EVALUATION OF SLOPES
7.13 EQUIVALENT EXPANSIONS

8 QUADRATIC EQUATIONS AND INEQUALITIES
8.1 INTRODUCTION
8.2 A PROCEDURE
8.3 THE STEPS OF THE ALGORITHM

9 NONLINEAR EQUATIONS OF ONE VARIABLE
9.1 INTRODUCTION
9.2 THE INTERVAL NEWTON METHOD
9.3 A PROCEDURE WHEN 0 / f ′(X)

9.4 STOPPING CRITERIA
9.5 THE ALGORITHM STEPS
9.6 PROPERTIES OF THE ALGORITHM
9.7 A NUMERICAL EXAMPLE
9.8 THE SLOPE INTERVAL NEWTON METHOD
9.9 AN EXAMPLE USING THE SLOPE METHOD
9.10 PERTURBED PROBLEMS

10 CONSISTENCIES
10.1 INTRODUCTION
10.2 BOX CONSISTENCY
10.3 HULL CONSISTENCY
10.4 ANALYSIS OF HULL CONSISTENCY
10.5 IMPLEMENTING HULL CONSISTENCY
10.6 CONVERGENCE
10.7 CONVERGENCE IN THE INTERVAL CASE

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

10.8 SPLITTING

10.9 THE MULTIDIMENSIONAL CASE

10.10 CHECKING FOR NONEXISTENCE

10.11 LINEAR COMBINATIONS OF FUNCTIONS

10.12 PROVING EXISTENCE

10.13 COMPARING BOX AND HULL CONSISTENCIES

10.14 SHARPENING RANGE BOUNDS

10.15 USING DISCRIMINANTS

10.16 NONLINEAR EQUATIONS OF ONE VARIABLE

11 SYSTEMS OF NONLINEAR EQUATIONS
11.1 INTRODUCTION

11.2 DERIVATION OF INTERVAL NEWTON METHOD

11.3 VARIATIONS OF THE METHOD

11.4 AN INNER ITERATION

11.4.1 A POST-NEWTON INNER ITERATION

11.5 STOPPING CRITERIA

11.6 THE TERMINATION PROCESS

11.7 RATE OF PROGRESS

11.8 SPLITTING A BOX

11.9 ANALYTIC PRECONDITIONING

11.9.1 An alternative method

11.10 THE INITIAL BOX

11.11 A LINEARIZATION TEST

11.12 THE ALGORITHM STEPS

11.13 DISCUSSION OF THE ALGORITHM

11.14 ONE NEWTON STEP

11.15 PROPERTIES OF INTERVAL NEWTON METHODS

11.16 A NUMERICAL EXAMPLE

11.17 PERTURBED PROBLEMSAND SENSITIVITYANAL-
YSIS

11.18 OVERDETERMINED SYSTEMS

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

12 UNCONSTRAINED OPTIMIZATION
12.1 INTRODUCTION
12.2 AN OVERVIEW
12.3 THE INITIAL BOX
12.4 USE OF THE GRADIENT
12.5 AN UPPER BOUND ON THE MINIMUM

12.5.1 First Method
12.5.2 Second Method
12.5.3 Third Method
12.5.4 Fourth Method
12.5.5 An Example

12.6 UPDATING THE UPPER BOUND
12.7 CONVEXITY
12.8 USING A NEWTON METHOD
12.9 TERMINATION
12.10 BOUNDS ON THE MINIMUM
12.11 THE LIST OF BOXES
12.12 CHOOSING A BOX TO PROCESS
12.13 SPLITTING A BOX
12.14 THE ALGORITHM STEPS
12.15 RESULTS FROM THE ALGORITHM
12.16 DISCUSSION OF THE ALGORITHM
12.17 A NUMERICAL EXAMPLE
12.18 MULTIPLE MINIMA
12.19 NONDIFFERENTIABLE PROBLEMS
12.20 FINDING ALL STATIONARY POINTS

13 CONSTRAINED OPTIMIZATION
13.1 INTRODUCTION
13.2 THE JOHN CONDITIONS
13.3 NORMALIZING LAGRANGE MULTIPLIERS
13.4 USE OF CONSTRAINTS
13.5 SOLVING THE JOHN CONDITIONS
13.6 BOUNDING THE LAGRANGE MULTIPLIERS
13.7 FIRST NUMERICAL EXAMPLE

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

13.8 SECOND NUMERICAL EXAMPLE
13.9 USING CONSISTENCY

14 INEQUALITY CONSTRAINED OPTIMIZATION
14.1 INTRODUCTION
14.2 THE JOHN CONDITIONS
14.3 AN UPPER BOUND ON THE MINIMUM
14.4 A LINE SEARCH
14.5 CERTAINLY STRICT FEASIBILITY
14.6 USING THE CONSTRAINTS
14.7 USING TAYLOR EXPANSIONS
14.8 THE ALGORITHM STEPS
14.9 RESULTS FROM THE ALGORITHM
14.10 DISCUSSION OF THE ALGORITHM
14.11 PEELING
14.12 PILLOW FUNCTIONS
14.13 NONDIFFERENTIABLE FUNCTIONS

15 EQUALITY CONSTRAINED OPTIMIZATION
15.1 INTRODUCTION
15.2 THE JOHN CONDITIONS
15.3 BOUNDING THE MINIMUM
15.4 USING CONSTRAINTS TO BOUND THE MINIMUM

15.4.1 First Method
15.4.2 Second Method

15.5 CHOICE OF VARIABLES
15.6 SATISFYING THE HYPOTHESIS
15.7 A NUMERICAL EXAMPLE
15.8 USING THE UPPER BOUND
15.9 USING THE CONSTRAINTS
15.10 INFORMATION ABOUT A SOLUTION
15.11 USING THE JOHN CONDITIONS
15.12 THE ALGORITHM STEPS
15.13 RESULTS FROM THE ALGORITHM
15.14 DISCUSSION OF THE ALGORITHM

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

15.15 NONDIFFERENTIABLE FUNCTIONS

16 THE FULL MONTY
16.1 INTRODUCTION
16.2 LINEAR SYSTEMS WITH BOTH INEQUALITIES

AND EQUATIONS
16.3 EXISTENCE OF A FEASIBLE POINT

16.3.1 Case 1
16.3.2 Case 2
16.3.3 Case 3

16.4 THE ALGORITHM STEPS

17 PERTURBED PROBLEMS AND SENSITIVITY ANALYSIS
17.1 INTRODUCTION
17.2 THE BASIC ALGORITHMS
17.3 TOLERANCES
17.4 DISJOINT SOLUTION SETS
17.5 SHARP BOUNDS FOR PERTURBED OPTIMIZA-

TION PROBLEMS .
17.6 VALIDATING ASSUMPTION 17.5.1
17.7 FIRST NUMERICAL EXAMPLE
17.8 SECOND NUMERICAL EXAMPLE
17.9 THIRD NUMERICAL EXAMPLE
17.10 AN UPPER BOUND
17.11 SHARP BOUNDS FOR PERTURBED SYSTEMS OF

NONLINEAR EQUATIONS

18 MISCELLANY
18.1 NONDIFFERENTIABLE FUNCTIONS
18.2 INTEGER AND MIXED INTEGER PROBLEMS

References

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Preface

The primary purpose of this book is to describe and discuss methods using
interval analysis for solving nonlinear equations and the global optimization
problem. The overall approach is the same as in the first edition. However,
various new procedures are included. Many of them have previously not
been published. The methods discussed find the global optimum and pro-
vide bounds on its value and location(s). All solution bounds are guaranteed
to be correct despite errors from uncertain input data, approximations, and
machine rounding.

The global optimization methods considered here are those developed
by the authors and their collaborators. Other methods using interval analysis
can be found in the literature. Most of the published methods use only
subsets of the procedures described herein.

In the first edition of this book, the interval Newton methods for solving
systems of nonlinear equations were the most important part of our global
optimization algorithms. In the second edition, this place is shared with
consistency methods that are used to speed up the initial convergence of
algorithms. As in the first edition, these central methods are discussed in
detail.

We show that interval Newton and consistency methods can prove the
existence and uniqueness of a solution of a system of nonlinear equations in
a given region. This has important practical implications for the discussed
global optimization algorithms. Proof of existence and/or uniqueness by
an interval Newton or consistency method follows as a by-product of ei-
ther algorithm and requires no extra computing. As before, these proofs
hold true in the presence of errors from rounding, approximation and data

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

uncertainty bounded with intervals.
In addition to many new algorithm improvements that result from inte-

grating consistency and classical interval approaches, there is an additional
new feature in the second edition. Using a set-theoretic foundation for
computing with intervals, it is possible to close interval computing systems.
This means that there are no undefined interval operations or functions. The
new system works over the set of extended real numbers including infini-
ties. This new system increases the generality of algorithms and simplifies
their development and construction.

The first edition contained an extensive set of numerical test results.
They are now obsolete. The current edition contains many illustrative nu-
merical examples, but no results from a list of standard tests.

Finally, our work together and its presentation in this book could not
have been accomplished without the support and encouragement of far too
many individuals and organizations to list. However, for the reasons cited,
we want to especially mention the following:

• Ramon Moore, for starting the field of interval analysis; for his many
and continuing contributions to the field; for his tireless encourage-
ment and support; and for his personal friendship.

• Sun Microsystems Inc., for financial support during the preparation
of the manuscript.

• Jeff Tupper, for creating GrafEq™ and for his generous help with
final preparation of manuscript Figures.

• Melissa Harrison, for expert consultation and support developing
interval-specific LATEX styles for Scientific Workplace™ and with
final preparation of the manuscript.

Eldon Hansen and Bill Walster

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 1

INTRODUCTION

1.1 AN OVERVIEW

In mathematics, there are real numbers, a real arithmetic for combining
them, and a real analysis for studying the properties of the numbers and
the arithmetic. Interval mathematics is a generalization in which interval
numbers replace real numbers, interval arithmetic replaces real arithmetic,
and interval analysis replaces real analysis.

Numerical analysis is the study of computing with real (and other kinds
of) numbers. Theoretical numerical analysis considers exact numbers and
exact arithmetic, while practical numerical analysis considers finite preci-
sion numbers in which rounding errors occur. This book is concerned with
both theoretical and practical interval analysis for computing with interval
numbers.

In this book we limit our attention almost exclusively to real interval
analysis. However, an analysis of complex intervals has been defined and
used, beginning with Boche (1966). A complex “interval” can be a rectan-
gle, a circle; or a more complicated set. Intervals of magnitude and phase
can also be used. Some early publications discussing complex intervals are
Alefeld (1968), Alefeld and Herzberger (1974), Gargantini (1975, 1976,
1978), Gargantini and Henrici (1972), Glatz (1975), Henrici (1975), Krier
and Spellucci (1975), and Nickel (1969).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

1.2 THE ORIGIN OF INTERVAL ANALYSIS

There are several types of mathematical computing errors. Data often con-
tain measurement errors, or are otherwise uncertain because rounding errors
generally occur, and approximations are made, etc. The purpose of interval
analysis is to provide upper and lower bounds on the effect all such errors
and uncertainties have on a computed quantity.

It is desirable to make interval bounds as narrow as possible. A major
focus of interval analysis is to develop practical interval algorithms that
produce sharp1 (or nearly sharp) bounds on the solution of numerical com-
puting problems. However, in practical problems with interval inputs, it is
often sufficient to simply compute reasonably narrow interval bounds.

Several people independently had the idea of bounding rounding errors
by computing with intervals; e.g., see Dwyer (1951), Sunaga (1958), War-
mus (1956), (1960) and Wilkinson (1980). However, interval mathematics
and analysis can be said to have begun with the appearance of R. E. Moore’s
book Interval Analysis in 1966. Moore’s work transformed this simple idea
into a viable tool for error analysis. In addition to treating rounding errors,
Moore extended the use of interval analysis to bound the effect of errors
from all sources, including approximation errors and errors in data.

1.3 THE SCOPE OF THIS BOOK

In this book we focus on a rather narrow part of interval mathematics. One
of our goals is to describe algorithms that use interval analysis to solve the
global (unconstrained or constrained) nonlinear optimization problem. We
show that such problems can be solved with a guarantee that the computed
bounds on the location and value of a solution are numerically correct. If
there are multiple solutions, all will be found and correctly bounded. It is
also guaranteed that the solution(s) are global and not just local.

Our optimization algorithms use interval linear algebra and interval
Newton algorithms that solve systems of nonlinear equations. Conse-
quently, we discuss these topics in some detail. Our discussion includes

1An interval bound is said to be sharp if it is as narrow as possible.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

some historical information but is not intended to be exhaustive in this
regard.

We also describe and use an extended interval arithmetic. In the past,
it has been customary to exclude certain arithmetic operations in both real
and interval arithmetic. Hanson (1968) and Kahan (1968) each described
incomplete extensions of interval arithmetic in which endpoints of intervals
are allowed to be infinite. The foundation for complete interval arithmetic
extensions is described in Chapter 4. Alefeld (1968) (See also Hansen
(1978b)) described a practical interval Newton algorithm in which division
by an interval containing zero is allowed.

The extension of interval arithmetic that we describe is a closed2 system
with no exclusions of any arithmetic operations or values of operands. It
includes division by zero and indeterminate forms such as 0

0 , ∞ − ∞,

0×∞, and ∞
∞ , etc., that are normally excluded from real and extended (i.e.,

including infinities) real arithmetic systems. It is remarkable that interval
analysis allows closure of systems containing such indeterminate forms
and infinite values of variables. All the algorithms in this book can be
implemented using these closed interval systems. The resulting benefits
are increased generality and simpler code.

1.4 VIRTUES AND DRAWBACKS OF INTERVAL MATHE-
MATICS

The history of floating-point computing and resulting rounding errors are
described in Section 4.11 of Hennessy and Patterson (1994). Interval anal-
ysis began as a tool for bounding rounding errors. Nevertheless, the belief
persists that rounding errors can be easily detected in another way. The
contention is that one need only compute a given result using, say single
and double precision. If the two results agree to some number of digits,
then these digits are correct.

2A closed system is one in which there are no undefined arithmetic operand-operator
combinations.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

1.4.1 Rump’s Example

An example of Rump (1988) shows that this argument is not necessar-
ily valid. Using IEEE-754 computers, the following form (from Loh and
Walster (2002)) of Rump’s expression with x0 = 77617 and y0 = 33096
replicates his original IBM S/370 results.

f (x, y) =(333.75 − x2)y6 + x2(11x2y2 − 121y4 − 2)

+ 5.5y8 + x

2y
(1.4.1)

With round-to-nearest (the usual default) IEEE-754 arithmetic, the expres-
sion in (1.4.1) produces:

32-bit: f (x0, y0) = 1.172604
64-bit: f (x0, y0) = 1.1726039400531786
128-bit: f (x0, y0) = 1.1726039400531786318588349045201838

All three results agree in the first seven decimal digits and thirteen digits
agree in the last two results. Nevertheless, they are all completely incorrect.
Even their sign is wrong.

Loh and Walster (2001) show that both Rump’s original and the expres-
sion for f (x, y) in (1.4.1) reduce to:

f (x0, y0) = x0

2y0
− 2, (1.4.2)

from which

f (x0, y0) = −0.827396059946821368141165095479816...

(1.4.3)

with the above values for x0 and y0.

Evaluating f (x0, y0) in its unstable forms using interval arithmetic of
moderate accuracy produces a wide interval (containing the correct value of

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

f (x0, y0)). The fact that the interval is wide even though the argument val-
ues are machine-representable is a warning that roundoff and catastrophic
cancellation have probably occurred; and therefore higher-accuracy arith-
metic is needed to get an accurate answer. In some cases, as is seen in
the above example, rearranging the expression can reduce or eliminate the
catastrophic cancellation.

1.4.2 Real Examples

Rump’s example is contrived. However, rounding errors and the effects of
cancellation impact computed results from important real world problems,
as documented in:

www.math.psu.edu/dna/disasters/

and by Daumas (2002). For example, the failure of the Patriot Missile bat-
tery at Daharan was directly attributable to accumulation of roundoff errors;
and the explosion of the Ariane 5 was caused by overflow. The Endeavour
US Space Shuttle maiden flight suffered a software failure in its Intelsat
satellite rendezvous maneuver and the Columbia US Space Shuttle maiden
flight had to be postponed because of a clock synchronization algorithm
failure.

Use of standard interval analysis could presumably have detected the
roundoff difficulty in the first example. The extended interval arithmetic
discussed in Chapter 4 and used in this book would have produced a correct
interval result in the second example, even in the presence of overflow.
See Walster (2003b) for an extended interval arithmetic implementation
standard in which underflow and overflow are respectively distinguished
from zero and infinity. The third failure was traced to an input-dependent
software error that was not detected in spite of extensive testing. Intervals
can be used to perform exhaustive testing that is otherwise impractical.
Finally, the fourth failure occurred after the algorithm in question had been
subjected to a three year review process and formally proved to be correct.
Unfortunately, the proof was flawed. Although it is impossible to know,
we believe that all of these and similar errors would have been detected if
interval rather than floating-point algorithms had been used.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

1.4.3 Ease of Use

Despite the value of interval analysis for bounding rounding errors in prob-
lems such as these, interval mathematics is less used in practice than one
might expect. There are several reasons for this. Undoubtedly, the main
reasons are the (avoidable) lack of convenience, the (avoidable) slowness
of many interval arithmetic packages, the (occasional) slowness of some
interval algorithms, and the (unavoidable) difficulty of some interval prob-
lems.

For programming convenience, an interval data type is needed to repre-
sent interval variables and interval constants as single entities rather than as
two real interval endpoints. This was made possible early in the history of
interval computations by the use of precompilers. See, for example, Yohe
(1979). However, the programs they produced were quite slow because
each arithmetic step was invoked with a subroutine call. Moreover, sub-
routines to evaluate transcendental functions were inefficient or lacking and
interval programs were available on only a few computers.

Eventually, some languages (e.g., Pascal-SC, Ada, and C++) made pro-
gramming with intervals convenient and reasonably fast by supporting user
defined types and operator overloading.

Microprogramming can be fruitful in improving the speed of interval
arithmetic. See Moore (1980). However, this has rarely been considered.

Convenient programming of interval computations was made available
as part of ACRITH. See Kulisch and Miranker (1983) and IBM (1986a,
1986b). However, the system was designed for accuracy with exact (de-
generate interval) inputs rather than speed with interval inputs that are not
exact. Because binary-coded decimal arithmetic was used, it was quite slow.

The M77 compiler was developed at the University of Minnesota. See
Walster, et al (1980). It was available only on certain computers manu-
factured by Control Data Corp. With this compiler, interval arithmetic was
roughly five times slower than ordinary arithmetic. All the numerical re-
sults contained in the first edition of this book were computed using the
M77 compiler.

More recently compilers have been developed by Sun Microsystems
Inc. that represent the current state of the art. See Walster (2000c) and

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Walster and Chiriaev (2000). These compilers implement a limited ver-
sion of the closed numerical system described briefly in Chapter 4. This
“Simple” system is designed to be fast when implemented in software. Nev-
ertheless, it permits calculation of interval bounds (although not as narrow
as possible) on functions having singularities and indeterminate forms.

Support for computing with intervals has been introduced into popular
symbolic computing tools, including:

• Mathematica (see: www.wolfram.com/),

• Maple (see: www.scg.uwaterloo.ca/),

• MuPad (see: www.mupad.de/), and

• Matlab (see: www.mathworks.com/).

Using intervals to graph relations that otherwise would be impossible
to rigorously visualize has been accomplished in:

• GrafEq (see: www.peda.com/grafeq) and

• Graphical Calculator (see: www.nucalc.com/).

Good interval arithmetic software for various applied problems is now
often available. Nevertheless, except when written in pure Java™, portable
codes are rare.

Unfortunately, at least one commercial product uses interval algorithms
with a quasi-interval arithmetic that does not produce rigorous interval
bounds. This was done for speed, but at the sacrifice of being able to legit-
imately claim that computed results are interval bounds in the commonly
accepted use of the term. All the algorithms in this book produce rigorous
interval bounds.

Ideally, interval hardware will simultaneously compute both endpoints
of the four basic interval arithmetic operations. When such a computer
is built the speed of interval computations will be comparable to that of
floating-point arithmetic and there will be no benefit from cutting corners
in rigor for speed. See:

www.sun.com/processors/whitepapers

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

There is another reason why interval analysis was slow to become popu-
lar. In its early history, computed bounds on the solution of certain problems
were very far from sharp. Subsequent analysis by many researchers has
made it possible to compute excellent bounds for solutions to a wide variety
of applied problems. As yet, this early stigma has been erased only slowly.

1.4.4 Performance Benchmarks

The relative speed of interval and point algorithms is often the cause of con-
fusion and misunderstanding. People unfamiliar with the virtues of interval
algorithms often ask what is the relative speed of interval and point opera-
tions and intrinsic function evaluations. Aside from the fact that relatively
little time and effort have been spent on interval system software implemen-
tation and almost no time and effort implementing interval-specific hard-
ware, there is another reason why a different question is more appropriate
to ask. Interval and point algorithms solve different problems. Comparing
how long it takes to compute guaranteed bounds on the set of solutions
to a given problem, as compared to providing an approximate solution of
unknown accuracy, is not a reasonable way to compare the speed of interval
and point algorithms.

Gustafson (1994a, 1994b, and 1995) has proposed a computer system
benchmarking strategy that focuses on the time require to do real work
(including to compute results with a known accuracy) rather than solely on
the time required to perform a fixed set of arbitrary numerical computations
(without regard to their accuracy). By requiring different systems to com-
pute comparable results, his strategy eliminates the kind of confusion that
occurs when fundamentally uncomparable point and interval computations
are nevertheless compared.

Independently, Walster (2001) has proposed a way of formulating inter-
val performance benchmark problems, designed to clear up this confusion
and to provide standards with which to compare different interval imple-
mentation systems. The following is a summary of this proposal.

Floating-point performance benchmark problems are used rou-
tinely to measure the performance of floating-point hardware
and software systems. As intervals become more widely used,

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

interval-specific performance tests will be developed. With
interval performance benchmarks, there is a need to measure
both run-time given the width of computed interval bounds,
and the width of computed bounds within a given runtime.
Because the quality of interval bounds is self-evident, there
need be no requirement that interval benchmark codes are the
same, although, they can be. Rather, standard problem state-
ments are needed against which any algorithm and computing
system, interval or not, can be compared. The following pro-
posals seem reasonable:

• Interval benchmarks must be written as a mathematical
problem statement with no specification of how bounds
are to be computed. Bounds, however, must be produced.
In other words, it is an error if computed bounds fail to
contain the set of all possible results.

• At least some input data items must be non-degenerate
(non-zero width) intervals, to unambiguously reflect the
benchmark’s interval nature. The width of input data
items might be fixed or relative to the magnitude of in-
terval data.

• When possible, benchmarks need to scale as a function
of the number of independent variables, so that efficiency
can be estimated as a function of problem size and num-
ber of processors.

• Single and double precision versions of problems will
be included in benchmark tests. Benchmarks can be any
problem, including:

– integration of ordinary or partial differential equations,

– solution of linear and nonlinear systems of equations,

– linear or dynamic programming problems, or

– nonlinear constrained or unconstrained global optimiza-
tion (nonlinear programming) problems.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

For uncomparable fixed sequences of operations, current interval im-
plementations are slower than real (i.e., noninterval) counterparts. As men-
tioned, above, this is not a necessary limitation.

For uncomparable problems, current interval algorithms can require
more interval operations than real counterparts. For example to get nar-
row bounds on the solution to linear algebraic equations, interval methods
sometimes require about six times as many arithmetic operations as real
methods require to compute an approximate solution. See Chapter 5. We
hope that future research produces more efficient interval algorithms for
this important problem. We also hope that comparisons between point and
interval algorithms will be confined to comparable problems, such as those
described above.

For many even not comparable problems, the operation counts in inter-
val algorithms are similar to those in noninterval algorithms. For example,
the number of iterations to bound a polynomial root to a given (guaranteed)
accuracy using an interval Newton method (see Section 9.2) is about the
same as the number of iterations of a real Newton method to obtain the
same (not guaranteed) accuracy.

For some problems, an interval method is faster than a noninterval one.
For example, to find all the roots of a polynomial requires fewer steps
for an interval Newton method than for a noninterval one. This is because
the latter generally must do some kind of explicit or implicit deflation. The
interval method does not. Another area in which interval algorithms have
been reported to be faster than point algorithms is in robust control. See
Nataraj and Sadar (2000), and Nataraj (2002a) and (2002b).

1.4.5 Interval Virtues

The transcendent virtue of interval analysis is that it enables the solution
of certain problems that cannot be solved by noninterval methods. The
primary example is the global optimization problem, which is the major
topic of this book. Even if interval procedures for this problem were slow,
this fact cannot be considered a flaw. Fortunately, the procedures are quite
efficient for most problems. This is in spite of the fact that even com-
puting sharp bounds on the values of a function of n-variables is known

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

to be an NP -hard problem. See Kreinovich (1998). As with many well
known point algorithms that efficiently solve NP -hard problems, interval
algorithms seek to capitalize on the structure of real world problems. Wal-
ster and Kreinovich (2003) characterize the nature of this structure. Many
of the new algorithm innovations described in this book, particularly box
and hull consistency in Chapter 10, use this strategy to achieve significant
performance increases.

The obvious comment regarding the apparent slowness of interval meth-
ods for some problems (especially if they lack the structure often found in
real world problems) is that a price must be paid to have a reliable algorithm
with guaranteed error bounds that non-interval methods do not provide. For
some problems, the price is somewhat high; for others it is negligible or
nonexistent. For still others, interval methods are more efficient.

Consider a problem in which the input is a degenerate (zero width)
interval (or intervals) and we simply wish to bound the effect of rounding
errors. For such a problem, we need to do more than just compare the
time for the interval and noninterval programs to execute. We also need
to compare the time it takes to solve the problem in the interval case with
both: the time it takes in the noninterval case, and the time (and effort) it
takes in the noninterval case to somehow perform a rigorous error analysis.
The proposed interval benchmark standard seeks to expose the time and
effort required to produce rigorous bounds using noninterval algorithms.

Next, consider a problem in which the input is a nondegenerate interval
(or intervals). For this problem, the interval approach produces a set of
answers to a set of problems. In so doing, it provides a rigorous sensitivity
analysis (see Chapter 17). For such a problem, it might be difficult or
impossible to do the sensitivity analysis by noninterval methods. When it
is possible to compare (as above) the speeds of the interval and noninterval
approaches to a given problem, the interval approach is often faster.

There are several other virtues of interval methods that make them well
worth paying even a real performance price. In general, interval methods
are more reliable. As we shall see, some interval iterative methods always
converge, while their noninterval counterparts do not. An example is the
Newton method for solving for the zeros of a nonlinear equation. See
Theorem 9.6.2 on page 183.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Also, natural stopping criteria exist for interval iterations. One can sim-
ply iterate until either the bounds are sufficiently narrow or no further reduc-
tion of the interval bounds occurs. The latter case happens when rounding
errors prevent further accuracy. A comparable heuristic stopping criteria
used in noninterval algorithms can be difficult to devise and be quite com-
plicated to implement.

Interval methods can yield a valuable by-product. As we shall see, al-
gorithms for solving systems of nonlinear equations can provide proof of
existence and uniqueness of a solution without the need for any computa-
tions not already performed in solving the problem. This occurs only for
simple (i.e., nonmultiple) zeros.

Interval methods find all solutions to a set of nonlinear equations in a
given interval vector or box (see Section 5.1 for a formal definition of a box).
They do so without the extra analysis, programming, and computation that
are necessary for a deflation process that is required by most noninterval
methods.

Probably the transcendent virtue of interval mathematics is that it pro-
vides solutions to otherwise unsolvable problems. Prior to the use of inter-
val methods, it was impossible to solve the nonlinear global optimization
problem except in special cases. In fact, various authors have written that
in general it is impossible in principle to numerically solve such problems.
Their argument is that by sampling values of a function and some of its
derivatives at isolated points, it is impossible to determine whether a func-
tion dips to a global minimum (say) between the sampled points. Such a dip
can occur between adjacent machine-representable floating point values.

Interval methods avoid this difficulty by computing information about a
function over continua of points even if interval endpoints are constrained to
be machine-representable. As we show in this book, it is not only possible
but relatively straightforward to solve the global optimization problem using
interval methods.

For an example illustrating how an interval method detects a sharp dip
in an objective function, see Moore (1991).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

1.5 THE FUTURE OF INTERVALS

Three forces are converging to offer unprecedented computing opportuni-
ties and challenges:

• Computer performance continues to double every 18 months
(Moore’s law),

• Parallel architectures with tens of thousands or even millions of pro-
cessors will soon be routinely available, and

• Interval algorithms to solve nonlinear systems and global optimiza-
tion problems are naturally parallel.

With the inherent ability of intervals to represent errors from all sources
and to rigorously propagate their interactions, the validity of answers from
the most extensive computations can now be guaranteed. With the natural
parallel character of nonlinear interval algorithms, it will be possible to
efficiently use even the largest parallel computing architectures to safely
solve large practical problems.

Computers are attaining the speed required to replace physical experi-
ments with computer simulations. Gustafson (1998) has written that using
computers in this way might turn out to be as scientifically important as
the introduction of the experimental method in the Renaissance. One diffi-
culty is how to validate computed results from huge simulations. A second
difficulty is how to then synthesize simulation results into optimal designs.
With interval algorithms, simulation validity can be verified. Moreover,
interval global optimization can use the mathematical models derived from
validated simulations to solve for optimal designs.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 2

INTERVAL NUMBERS AND
ARITHMETIC

2.1 INTERVAL NUMBERS

Consider a closed1, real interval X = [a, b]. An interval number X is such
a closed interval. That is, it is the set {x | a ≤ x ≤ b} of all real numbers
between and including the endpoints a and b. We use the terms “interval
number” and “interval” interchangeably. An interval number can be an
interval constant or a value of an interval variable.

A real number x is equivalent to an interval [x, x], which has zero
width. Such an interval is said to be degenerate. When we express a real
number as an interval, we usually retain the simpler noninterval notation.
For example, we often write 2 in place of [2, 2] or x in place of [x, x]

The endpoints a and b of a given interval might not be representable
on a given computer. Such an interval might be a datum or the result of
a computation on the computer. In such a case, we round a down to the
largest machine-representable number that is less than a and round b up to
the smallest machine-representable number that is greater than b. Thus, the
retained interval contains [a, b]. This process is called outward rounding.

1The word “closed” in this context is short hand for “topologically closed”. A closed
interval includes the interval’s endpoints. An open interval does not.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Directed rounding is rounding that is specified to be either up or down.
That is, it is rounding to either a (specified) larger of smaller number than
the number being rounded. Directed rounding is used to achieve the out-
ward rounding used in practical interval arithmetic. The IEEE-754 (1985)
standard for floating-point arithmetic specifies that directed rounding be
an option in computer arithmetic. Directed rounding has been available in
hardware since the Intel 8087 chip was introduced in 1981. See Palmer and
Morse (1984).

2.2 NOTATION AND RELATIONS

When a real (i.e., noninterval) quantity is expressed in lower case, we
generally use the corresponding capital letter to denote the corresponding
interval quantity. For example, if x denotes a real variable then X denotes
an interval variable. If the real quantity is denoted by a capital letter, we
denote the corresponding interval quantity by attaching a superscript “I”.
For example, if a real matrix is denoted by A, the corresponding interval
matrix is denoted by AI. See Chapter 5.

A superscript “I” on the symbol for a function indicates that it is an
interval function. Thus, f I is an interval function. However, if f (x) is a
real function of a real variable x, then f (X) also denotes the corresponding
interval function. This fact is indicated by the presence of the interval argu-
ment X. For a definition and discussion of an interval function, see Chapter
3. A thorough treatment of the notation used in this book is presented at
the end of Chapter 4.

An underbar indicates the lower endpoint of an interval; and an overbar
indicates the upper endpoint. For example, if X = [a, b], then X = a and

X = b. Similarly, we write f (X) = [f (X), f (X)].
An interval X = [a, b] is said to be positive if a > 0 and nonnegative

if a ≥ 0. It is said to be negative if b < 0 and nonpositive if b ≤ 0.

Two intervals [a, b] and [c, d] are equal if and only if a = c and b = d.

Interval numbers are partially ordered. We have [a, b] < [c, d] if and
only if b < c.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

2.3 FINITE INTERVAL ARITHMETIC

Let +, −, ×, and ÷ denote the operations of addition, subtraction, multipli-
cation, and division, respectively. If • denotes any one of these operations
for arithmetic on real numbers x and y, then the corresponding operation
for arithmetic on interval numbers X and Y is

X • Y = {x • y | x ∈ X, y ∈ Y } (2.3.1)

Thus the interval X•Y resulting from the operation contains every possible
number that can be formed as x • y for each x ∈ X, and each y ∈ Y.

This definition produces the following rules for generating the endpoints
of X • Y from the two intervals X = [a, b] and Y = [c, d].

X + Y = [a + c, b + d] (2.3.2)

X − Y = [a − d, b − c] (2.3.3)

X × Y =






[ac, bd] if a ≥ 0 and c ≥ 0
[bc, bd] if a ≥ 0 and c < 0 < d

[bc, ad] if a ≥ 0 and d ≤ 0
[ad, bd] if a < 0 < b and c ≥ 0
[bc, ac] if a < 0 < b and d ≤ 0
[ad, bc] if b ≤ 0 and c ≥ 0
[ad, ac] if b ≤ 0 and c < 0 < d

[bd, ac] if b ≤ 0 and d ≤ 0
[min(bc, ad),
max(ac, bd)] if a < 0 < b and c < 0 < d

(2.3.4)

If we exclude division by an interval containing 0 (that is, c < 0 or d > 0),
we have

1

Y
=
[

1

d
,

1

c

]

(2.3.5)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

and

X

Y
= X ×

(
1

Y

)

(2.3.6)

The case of division by an interval containing zero is covered in Chapter 4.
For n a nonnegative integer, we also define

Xn =






[1, 1] if n = 0
[an, bn] if a ≥ 0 or if n is odd
[bn, an] if b ≤ 0 and n is even

[0, max(an, bn)] if a ≤ 0 ≤ b and n > 0 is even.
(2.3.7)

2.4 DEPENDENCE

Suppose we subtract the interval X = [a, b] from itself. As a result of
using the rule (2.3.3) for subtraction of intervals, we obtain the interval
[a−b, b−a]. We might expect to obtain [0, 0]. However, we do not (unless
b = a). The result is {x − y | x ∈ X, y ∈ X} instead of {x − x | x ∈ X}.

In general, each occurrence of a given variable in an interval computa-
tion is treated as a different variable. Thus X − X is computed as if it were
X − Y with Y numerically equal to, but independent of X. This causes
widening of computed intervals and makes it difficult to compute sharp
numerical results of complicated expressions.

This unwanted extra interval width is called the dependence problem
or simply dependence. One should always be aware of this difficulty and,
when possible, take steps to reduce its effect. We discuss some ways to do
this in Section 3.3 and elsewhere in this book.

Equation (2.3.7) defines the n-th power of an interval. It is included to
overcome the dependence problem in multiplication. For example, when
n = 2, the definition is equivalent to X2 = {x2 | x ∈ X} rather than
X × X = {x × y | x ∈ X, y ∈ X}. Using (2.3.7), we compute [−1, 2]2 =
[0, 4] rather than [−1, 2] × [−1, 2] = [−2, 4] using (2.3.4)

Moore (1966) notes that if a particular interval variable occurs only
once in a given form of a function, then it cannot give rise to excess width

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

because of dependence. Suppose every variable occurs only once in a
function. Then an (exact) interval evaluation yields the exact range of the
function as variables range over their interval bounds.

Thus, dependence can occur in evaluating a function f (X, Y) in the
form X−Y

X+Y
, but not if it is written in the form 1 − 2

1+ X
Y

. If we evaluate

f (X, Y) in the latter form and if no division by an interval containing zero
occurs, then the resulting interval is the exact range of f (x, y) for x ∈ X

and y ∈ Y . We discuss the case of division by zero in Chapter 4.
Widening of intervals from dependence can occur even when evalu-

ating a real (i.e., degenerate interval) function with a real argument. An
example of this is Rump’s expression in (1.4.1). Assume we use inter-
val arithmetic to bound rounding errors. As soon as a rounding occurs, a
non-degenerate interval is introduced. If this interval is again used in the
computation, dependence can cause widening of the final interval bound
on the function value. As we shall see in Chapter 5 when doing Gaussian
elimination to solve systems of linear equations, dependence can cause
catastrophic numerical instability, which is exposed by the widening of in-
tervals. Numerical instability can remain hidden in the result of evaluating
a floating-point expression, but not in an interval expression result.

2.4.1 Dependent Interval Arithmetic Operations

We now describe a useful arithmetic procedure called dependent subtrac-
tion. In other publications we have called this procedure cancellation. To
motivate it, assume we have n intervals Xi and, for each i = 1, · · · , n, we
want the sum of all but the i-th interval. Suppose we first compute the sum
S1 = X2 + · · · + Xn. Next, we want the sum S2 = X1 + X3 + · · · + Xn.

Instead of computing the entire sum S2, we want to use the previous
result. We note that

S2 = S1 + X1 − X2. (2.4.1)

Therefore, we can compute S2 by adding X1 to S1 and then cancelling X2

from the result by subtraction. But X2 − X2 = [X2 − X2, X2 − X2] which
is not the (degenerate) zero interval. Therefore, we do not get a sharp result
if we compute S2 using 2.4.1 (unless X2 is degenerate).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Instead of subtracting using (2.3.3), we use the special dependent sub-
traction rule which we write as

X � Y = [a − c, b − d] (2.4.2)

As usual, we must round outward when computing this interval. This
can be implemented by defining the “interval” [d, c] and using the subtrac-
tion rule (2.3.3) to compute [a, b]−[d, c]. Note that [d, c] is not an interval
when c < d. Alternatively, if dependent interval operations are allowed in
an interval supporting compiler, an expression such as X.DSUB.Y can be
used to represent the operation X � Y. The Sun Microsystems Inc. For-
tran and C++ compilers support dependent subtraction using the .DSUB.
syntax, (see Walster (2000c)).

Two points to make regarding dependent subtraction are:

1. For X � A to be legal, X must be additively dependent on A. This is
true if X = A + B for some interval B.

2. Suppose |B| << |A| , so X = A + B is dominated by A. Then
rounding prevents dependent subtraction from recovering a sharp
bound on B. In this case, B must be saved or directly recomputed
to avoid excess width. The width (see Chapter 3) of X � A can be
checked for this event.

See Sections 6.2 and 10.5 for example uses of dependent subtraction.
In addition to the dependent subtraction operation, each interval basic

arithmetic operation (BAO) has a corresponding dependent form. For ex-
ample, dependent division, denoted �, is used to recover either A or B

from X = A × B. The key requirement to use a dependent operation is:
The dependent operation must be the inverse of an operation already per-
formed on the same variable or subfunction being “removed”. Dependent
operations cannot be performed on interval constants, as they cannot be
dependent. In this respect the distinction between constants and variables
is much more important for intervals than for points.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

2.5 EXTENDED INTERVAL ARITHMETIC

In the above rules of interval arithmetic, we excluded division by an interval
containing zero. Nevertheless, it is often useful to remove this restriction.
The resulting arithmetic is called extended interval arithmetic. This arith-
metic was first discussed (independently) by Hanson (1968) and Kahan
(1968). An example of its utility is that it allows the derivation of an in-
terval Newton method guaranteed to find all real zeros of a function of
one variable in a given interval. See Alefeld (1968), Hansen (1978b), and
Section 9.6.

In Chapter 4, we give an even more general interval arithmetic. It
not only allows use of intervals with unbounded endpoints but allows for
computation of expressions containing indeterminate forms such as 0 ÷ 0,

0 × ∞, ∞ ÷ ∞, ∞ − ∞, etc. This arithmetic system is closed under
all arithmetic operations and the evaluation of all arithmetic expressions,
whether they are single-valued functions or multi-valued relations.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 3

FUNCTIONS OF
INTERVALS

3.1 REAL FUNCTIONS OF INTERVALS

There are a number of useful real-valued functions of intervals. In this
section, we list those that we use and our notation for them.

The midpoint or center of an interval X = [a, b] is

m(X) = a + b

2
.

The width of X is

w(X) = b − a.

The magnitude is defined to be the maximum value of |x| for all x ∈ X.
Thus,

mag (X) = max (|a|, |b|) (3.1.1)

The magnitude is also called the absolute value by some authors. We use
the notation |X| to denote mag (X) in the development and analysis of our

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

algorithms. The mignitude is defined to be the minimum value of |x| for
all x ∈ X. Thus,

mig(X) =





a if a > 0
−b if b < 0
0 otherwise

(3.1.2)

The interval version of the absolute value function abs(X) can be de-
fined in terms of the magnitude and mignitude:

abs (X) = mag (X) − mig(X). (3.1.3)

We also use the notation |X| to denote abs (X) in two contexts: discussing
slope expansions of nonsmooth functions in Section 7.11; and applications
involving nondifferentiable functions in Chapter 18.

Various other real-valued functions of intervals have been defined and
used. For a discussion of many such functions, see Ris (1975).

3.2 INTERVAL FUNCTIONS

An interval function is an interval-valued function of one or more interval
arguments. Thus, an interval function maps the value of one or more inter-
val arguments onto an interval. Consider a real-valued function f of real
variables x1, · · · , xn and a corresponding interval function f I of interval
variables X1, · · · , Xn. The interval function f I is said to be an interval
extension of f if f I (x1, · · · , xn) = f (x1, · · · , xn) for any values of the
argument variables. That is, if the arguments of f I are degenerate intervals,
then f I (x1, · · · , xn) is a degenerate interval equal to f (x1, · · · , xn).

This definition presupposes the use of exact interval arithmetic when
evaluating f I. In practice, with rounded interval arithmetic, we are only
able to compute F , an interval enclosure of f I. Therefore, we have

f (x1, · · · , xn) ∈ F (x1, · · · , xn)

even when f I is an interval extension of f .
An interval function f I if said to be inclusion isotonic if Xi ⊂ Yi

(i = 1, · · · , n) implies f I (X1, · · · , Xn) ⊂ f I (Y1, · · · , Yn). It follows

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

from the defining relation (2.3.1) that finite interval arithmetic is inclusion
isotonic. That is, if • denotes +, −, ×, or ÷, then Xi ⊂ Yi (i = 1, 2)

implies (X1 • X2) ⊂ (Y1 • Y2). If outward rounding is used, then interval
arithmetic is inclusion isotonic even when rounding occurs. See Alefeld
and Herzberger (1974, p.49) or Alefeld and Herzberger (1983, p.41).

Chapter 2 contains a brief description of the finite interval system as
originally conceived by Moore (1966). Chapter 4 contains the main features
of closed interval systems that eliminate many of the limitations in the finite
system. In particular, for the closed system version (Theorem 4.8.14) of the
fundamental theorem of interval analysis (Theorem 3.2.2), the requirement
that interval functions be inclusion isotonic interval extensions is removed.
To provide a baseline from which to compare the finite and closed systems,
the remainder of this chapter is developed in the finite system. The algo-
rithms for solving nonlinear systems and global optimization problems can
be implemented in either system, although there are significant advantages
to the closed system.

Except where stated otherwise (for example in Chapter 18), all interval
enclosures are assumed to be inclusion isotonic interval extensions of real
valued continuous functions. In closed systems (Chapter 4), these assump-
tions are unnecessary. When the closed system is used and an assumption
of continuity is required, there are at least three alternatives, none of which
require dealing with undefined outcomes: Constraints can be introduced to
exclude points of discontinuity, expressions can be transformed to be con-
tinuous mappings, or Theorem 4.8.15 can be used to enforce continuity.

For example, whenever division by an expression E occurs, the con-
straints E < 0 or 0 < E can be explicitly introduced to preclude division
by zero. Whenever a ratio is assumed to be continuous this has the effect
of precluding division by an interval containing zero. The even better al-
ternative is to transform the ratio into a continuous function of the same
independent variables. See Walster (2003a) for a detailed analysis of how
this can be done. The third alternative is to use Theorem 4.8.15 to introduce
a continuity constraint.

To simplify notation, we remove the superscript “I” on f when it is
unambiguous to do so and simply let f (X1, · · · , Xn) denote an interval
extension of a given real-valued function f (x1, · · · , xn) . Any function

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

written with interval argument(s) is implicitly an interval function. This
notation is ambiguous because there is no unique interval function that is
an enclosure of a given function f . (See Section 3.3). Also, we shall say
that we evaluate a real function with interval arguments. What we really
mean is: we evaluate some interval function that is an enclosure of f . We
ask the reader’s indulgence in these conventions. They simplify exposition.

There is another ambiguity in notation. It is standard practice in math-
ematics to use the same notation for more than one purpose. The notation
f (x) can denote a function in a theoretical sense without a specific ex-
pression, or it can denote one specific expression. It can also denote the
numerical value of a function at a point x. Usually, a different notation is
used to denote an approximate value computed, for example, using rounded
arithmetic.

In the interval case, we compound this ambiguity. The notation f (X)

can refer to a theoretical function or one of many expressions for it. Al-
though a different notation is usually employed in this case, f (X) can also
denote the interval that is the range of values of f (x) for all x ∈ X. f (X)

can even denote a bound on the range that is understood to be unsharp be-
cause of rounding errors and dependence, however we prefer the notation
F (X) in this case.

It is common practice to let context imply the interpretation for a given
notation. We shall usually follow this practice. However, we sometimes
use special notation to distinguish cases. For example, f (X) often denotes
the range of the function f over the interval X, whereas or F (X) denotes
an interval bound on f (X) that is computed by some (unspecified) finite
precision numerical procedure. The width of F (X) includes both the range
of f over X and any numerical errors arising from rounding and depen-
dence. Similarly, F (x) usually denotes the numerically computed interval
bound (including any numerical errors) on the single number f (x). Occa-
sionally we want to denote the fact that a real function f of a real value
x is computed using rounded interval arithmetic to bound rounding errors.
To emphasize that the result is an interval, we often append a superscript I

and denote it by f I(x).

From the fact that the interval arithmetic operators are inclusion iso-
tonic, it follows that rational interval functions are inclusion isotonic. How-

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

ever, for this to be true, we must restrict a given rational function to a single
form using only interval arithmetic operations. The following example
from Caprani and Madsen (1980) shows that if a given rational function
is evaluated in different ways for different intervals, the results might not
exhibit inclusion isotonicity.

Suppose we rewrite the function f (x) = x(1 − x) in the form

f (x) = c(1 − c) + (1 − 2c)(x − c) − (x − c)2. (3.2.1)

These two forms of f (x) are equivalent for an arbitrary value of c. Let
X = [0, 1] and c = m(X) = 0.5. Evaluating f (X) in the form in (3.2.1),
we compute f ([0, 1]) = [0, 0.25]. Now replace X = [0, 1] by X′ =
[0, 0.9]. Also replace c = 0.5 by c′ = m(X′) = 0.45. We compute
f (X′) = [0, 0.2925]. Thus, f (X′) is not contained in f (X) even though
X′ ⊂ X. Inclusion isotonicity failed because we changed the functional
form of f when we replaced c by c′.

In this example, we could say that the functional form is the same for
each evaluation since c = m(X) and c′ = m(X′). However, the midpoint
m(X) of an interval cannot be evaluated using only the interval arithmetic
operations of addition, subtraction, multiplication, and division. A separate
computation involving the endpoints of X is required for m(X).

The following Theorem shows that, for rational functions, inclusion
isotonicity is easily assured.

Theorem 3.2.1 Let F(X1, · · · , Xn) be a rational function evaluated using
finite precision interval arithmetic. Assume that F is evaluated using a fixed
form with a fixed sequence of operations involving only interval addition,
subtraction, multiplication, and division. Then F is inclusion isotonic.

Proof of Theorem 3.2.1 is omitted. It follows easily from inclusion
isotonicity of the four basic interval arithmetic operations.

Common practice makes use of monotonicity over an interval to sharply
bound the range of a real function. We discuss this topic in Section 3.6.
When we use monotonicity to compute our result, we do not limit expres-
sions to those made up of the four basic interval arithmetic operations.
However, it is easy to assure that computed results are inclusion isotonic.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Irrational functions can be treated as follows or using the more general
closed interval system discussed in Chapter 4. Let f be a real irrational
function of a real vector x = (x1, · · · , xn). Assume that a rational approx-
imation r(x) is known such that |f (x) − r(x)| < ε for all x given that
ai ≤ xi ≤ bi (i = 1, · · · , n) for some ai and bi . Then

f (x1, · · · , xn) ⊆ r(x1, · · · , xn) + ε[−1, +1]

for any points xi ∈ [ai, bi] (i = 1, · · · , n). Thus the range of f over
the region with xi ∈ Xi (i = 1, · · · , n) can be bounded by evaluating
r(X1, · · · , Xn) using interval arithmetic and adding the error bound [−ε, ε],
provided:

• Xi ⊆ [ai, bi] . This is assured through the choice of Xi.

• r(x1, · · · , xn) ∈ r(X1, · · · , Xn) for all xi ∈ Xi (i = 1, · · · , n) .

This follows from the fundamental Theorem of interval arithmetic
(Theorem 3.2.2), because r(X1, · · · , Xn) is an inclusion isotonic
interval extension of the rational function r(x1, · · · , xn), for all xi ∈
[ai, bi] (i = 1, · · · , n).

This “interval evaluation” of the irrational function f is inclusion iso-
tonic if the interval evaluation of r is inclusion isotonic. The result is not an
interval extension of f because F (x1, · · · , xn) = r (x1, · · · , xn)+[−ε, ε]
instead of f (x1, · · · , xn). Nevertheless

f (X1, · · · , Xn) ⊆ F(X1, · · · , Xn),

which is the critically important result of the fundamental theorem.
Interval rational function approximations of irrational functions are in-

clusion isotonic interval extensions provided the rational operations are
those described in Theorem 3.2.1. More importantly, they bound the range
of the approximated irrational function.

Unless otherwise stated, we shall assume that any interval function used
in this book is an enclosure of the corresponding real function. This is true
either because the considered function is itself an inclusion isotonic interval

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

extension, or it is an inclusion isotonic interval bound on the considered
function.

The range of a function can be expressed in interval form as

range (f) = f (X1, · · · , Xn) (3.2.2)

= [inf f (x1, · · · , xn), sup f (x1, · · · , xn)]
where the inf and sup are taken for all xi ∈ Xi (i = 1, · · · , n). The fol-
lowing theorem due to Moore (1966) shows how easy it is to bound the
range of a function. It is undoubtedly the most important theorem in inter-
val analysis. Rall (1969) aptly calls it the fundamental theorem of interval
analysis. One of its far reaching consequences is that it makes possible the
solution to the global optimization problem.

Theorem 3.2.2 Let f (X1, · · · , Xn) be an infinite precision inclusion
isotonic interval extension of a real function f (x1, · · · , xn). Then
f (X1, · · · , Xn) contains the range of values of f (x1, · · · , xn) for all xi ∈
Xi (i = 1, · · · , n).

Proof. Assume that xi ∈ Xi for all i = 1, · · · , n. By inclusion isotonic-
ity, f (X1, · · · , Xn) contains f ([(x1, x1], · · · , [xn, xn]) = f (x1, · · · , xn)

because f (X1, · · · , Xn) is an interval extension of f . Since this is true for
all xi ∈ Xi (i = 1, · · · , n), f (X1, · · · , Xn) contains the range of f over
these points.

If f is a rational function, then direct evaluation using interval arith-
metic produces bounds on the set of all function values over the argument
intervals. While f (X1, · · · , Xn) contains the values of f (x1, · · · , xn),

given xi ∈ Xi for i = 1, . . . , n; the bounds on the set of f -values is not
sharp in general. This is because of dependence (See Section 2.4). If a given
endpoint of f (X1, · · · , Xn) is exactly the correct bound for the range, we
say that the endpoint is sharp. If both endpoints are sharp, we shall say that
f (X1, · · · , Xn) is sharp.

Using finite precision interval arithmetic and directed rounding means
that in practice we are only able to compute an interval enclosure F of f.

When the width of F is as small as possible for a given word length, we
also call F sharp.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

3.3 THE FORMS OF INTERVAL FUNCTIONS

When evaluating a function with interval arguments, the computed interval
depends on the form in which the function is written. One example of this
follows from the fact that interval arithmetic fails to satisfy the distribu-
tive law of algebra. Instead, as shown by Moore (1966), it satisfies the
subdistributivity law which states that if X, Y , and Z are intervals, then

X(Y + Z) ⊂ XY + XZ. (3.3.1)

Therefore, interval expressions are written in factored form when possible.
If we compute X(Y + Z), we always obtain the exact range of the

function f (x, y, z) = x(y + z) (if exact interval arithmetic is used). This
is because each variable occurs only once in the expression of the function,
so dependence (see Section 2.4) can cause no widening of the computed
intervals.

This fact holds in general. Moore (1966) notes the following. Suppose
the expression for a rational function f is such that each interval variable
occurs only once. Then evaluation of f using exact interval arithmetic
produces the exact range of the function over the region defined by the
interval variables. If X(Y +Z) is computed using exact interval arithmetic,
the result is sharp.

A common way to rewrite a quadratic function to remove multiple
occurrences of a variable is to complete the square. For example, we can
rewrite x(x − 2) as (x − 1)2 − 1.

Considerable effort has been expended by interval analysts in attempt-
ing to produce systematic methods with which to create an interval function
that more sharply bounds the range of a given function. For example, see
Ratschek and Rokne (1984), Neumaier (1989), and Rokne (1986). Such
methods are important to improve the efficiency of optimization algorithms.
However, we shall discuss them only briefly. The range of a function can
also be bounded by expanding the function in Taylor series and bounding
the remainder by interval methods. See Chapter 7.

Let f (X1, · · · , Xn) denote the true range (expressed as an interval) of
a function f (x1, · · · , xn) for all xi in an interval Xi (i = 1, · · · , n). See
(3.2.2). Denote the difference between the width of a boundF(X1, · · · , Xn)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

on the range of f and the true width of the range by

E [f (X1, · · · , Xn)] = w [F (X1, · · · , Xn)] − w [f (X1, · · · , Xn)] .

Also denote

d = max
1≤i≤n

w(Xi).

Moore (1966) proved that

E[f (X1, · · · , Xn)] = O(d) (3.3.2)

for a rational function f in any form. He noted that f (x1, · · · , xn) can be
written as

fc(x1, · · · , xn) = f (c1, · · · , cn) + g(x1 − c1, ...xn − cn)

where g is rational and ci = m(Xi) (i = 1, · · · , n). He conjectured that

E[fc(X1, · · · , Xn)] = O(d2). (3.3.3)

That is, the form fc (called the centered form by Moore) has an excess
width that is of second order in the “width” d of the box (X1, · · · , Xn).
This conjecture was proved to be true by Hansen (1969c).

Various centered forms have been derived. By using expansions of
appropriate orders, it is possible to derive centered forms fc for which

E[fc(X1, · · · , Xn)] = O(dk) (3.3.4)

for arbitrary k = 2, 3, · · · . For a thorough discussion, see Ratschek and
Rokne (1984).

Note that equations (3.3.2), (3.3.3), and (3.3.4) are asymptotic state-
ments. They are useful expressions only when d is small. Consider
two different formulations f1 and f2 for the same function. Suppose

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

E[f1(X)] = O(d) and E[f2(X)] = O(d2). If d is not small, it is quite
possible that f1(X) is narrower than f2(X).

An unsolved problem in interval analysis is how to know how small the
width of an interval must be for the centered form to always yield a result at
least as sharp as can be computed using the “original” form of the function.

Centered forms are very useful and give good results when w(X) is
reasonably small. However, the extra effort to use them is generally not
warranted when w(X) is not small. An apparent drawback is that they are
not inclusion isotonic unless c is fixed. See the example in Section 3.2.
However, the fixed c requirement no longer exists. As mentioned earlier,
in the closed interval systems described in Chapter 4, an explicit inclusion
isotonicity assumption is not required.

In this book, we are particularly interested in the evaluation of inter-
val functions when finding zeros of systems of nonlinear functions and
when finding minima of functions. For this purpose, we often use Taylor
expansions which we discuss in Chapter 7. Centered forms and Taylor ex-
pansions yield increasingly sharp bounds as the interval bounding a solution
converges toward a point.

3.4 SPLITTING INTERVALS

In whatever form we express a function, when we evaluate it with interval
arguments, we tend to get narrower bounds on its range as argument widths
decrease. One way to compute narrower range-bounds is to subdivide an
interval argument and compute the union of results for each subinterval. If
we subdivide a given interval X into subintervals Xi (i = 1, ...m) so that

X =
m⋃

i=1

Xi,

we have

f (X) ⊆
m⋃

i=1

f I(Xi)

⊆ f I(X).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We have used a superscript “I” on f to emphasize that because of depen-
dence, the computed value of f I(Xi) is generally not sharp, even if infinite
precision interval arithmetic is used. Each computed interval f I(Xi) tends
to suffer less from dependence than the computed bound f I(X) on f (X).

Therefore, the union is generally sharper. The same inclusions hold if
rounded finite precision interval arithmetic is used, in which case

f (X) ⊆
m⋃

i=1

F(Xi)

⊆ F(X).

However, interval splitting can be costly in the multidimensional case.
If we divide in half each of n interval variables on which a function depends,
we must evaluate the function with 2n sets of different arguments. The
amount of extra computing can be prohibitive. However, if we subdivide
only a few interval variables, we do not generate as many cases. Therefore,
we shall only selectively use this approach later when solving systems of
nonlinear equations and optimization problems; that is, when all other less
costly alternatives fail to make sufficiently good progress. We discuss other
aspects of splitting in Sections 11.8 and 12.13.

Even when n is relatively large, only a few dimensions of a solution
set can be graphically displayed. This is typically done by fixing values of
variables in the remaining dimensions. This fact makes it practical to sub-
divide displayed boxes so “slices” of the solution region can be accurately
displayed.

3.5 ENDPOINT ANALYSIS

Generally, the computed interval value of a function is not sharp, even
when exact interval arithmetic is used. This is because of dependence (see
Section 2.4). An exception occurs when each variable appears only once in
the expression used to compute the function. In such cases the discussion
in Section 3.3 is not relevant because it deals only with how much the
computed interval value of a function asymptotically exceeds its range.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Unfortunately, we can not know, in general, whether a computed result
is sharp or not. If we wish to know, we can do so by using an endpoint
analysis which was described by Hansen (1997b). It requires extra (non-
numerical) computing which increases as a linear function of the amount of
computing necessary to evaluate the function. We briefly describe endpoint
analysis in this section.

The rules for interval arithmetic (see Section 2.3) are expressed in terms
of the endpoints of the intervals involved. For example, suppose we add an
interval X = [X, X] to itself and subtract X from itself. We obtain

X + X = [2X, 2X] and

X − X = [X − X, X − X].

Note that the lower endpoint of X+X is a function of X only and the upper

endpoint of X + X is a function of X only. However, each endpoint of
X − X is a function of both X and X.

As we shall see, these facts tell us that not only is X+X sharp and X−X

is not sharp, but also that the function f (x) = x + x is a monotonically
increasing function of x. (Remember, however, that X � X = [0, 0] is
sharp.)

Suppose we compute an interval extension F(X1, · · · , Xn) of a ra-
tional function f (x1, · · · , xn). Following the rules of interval arithmetic,
the lower endpoint F and the upper endpoint F of F(X1, · · · , Xn) are
computed as functions of the endpoints of Xi (i = 1, · · · , n). However,
we do not denote this fact in our notation because the form of depen-
dence can change when the values of the Xi change. For example, let
f (x) = x (x − 3) . If X = [1, 2] then F = X

(
X − 3

)
. However, if

X = [2, 5] then F = X
(
X − 3

)
.

An endpoint of the range of a function is a value of the function at a
point. Therefore, if F or F is computed using more than one endpoint of a
given variable, then it cannot be sharp. A kind of converse is expressed in
the following Theorem from Hansen (1997b).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Theorem 3.5.1 If F is computed in terms of a single endpoint of each of

the variables on which F depends, and if the same is true of F, then F and

F are sharp.

Note that this theorem permits both F and F to be a function of
the same endpoint of one or more of the variables. For example, sup-
pose F(X1, X2) = X1X2. If X1 > 0 and 0 ∈ X2, then F(X1, X2) =
[X1X2, X1X2]. In this case, both endpoints of F(X1, X2) are functions of
the same endpoint of X1. Yet, F(X) is sharp.

Of course, both endpoints of F cannot be functions of the same endpoint
of all the components of X. If they were, the two endpoints of F would be
the same and F could not contain the range of f (x) for all x ∈ xI.

Hansen (1997) describes four applications of endpoint analysis. In
addition, it can also be used to verify monotonicity. Theorem 3.5.2 below
indicates how this can be done. To state the theorem, we need the following
definition:

Definition 3.5.2 A product of two intervals is a “P0(Xi) product” if both
intervals contain zero as an interior point and one is a function of Xi, but
the other is not.

Theorem 3.5.3 Assume that when F(X) is computed, no P0(Xi) product
occurs (for some i = 1, · · · , n). If F is a function of Xi but not Xi and

F is a function of Xi but not Xi , then f (x) is a monotonically increasing

function of xi for x ∈ xI. If F is a function of Xi but not Xi and F is a

function of Xi but not Xi , then f (x) is a monotonically decreasing function
of xi for x ∈ xI.

Monotonicity of a function over an interval can be proved by verifying
that the value of a derivative does not contain zero as an interior point.
However, lack of sharpness (due to dependence) of a computed derivative
can sometimes prevent verification while endpoint analysis succeeds in
doing so. The reverse can also occur since dependence can cause loss of
sharpness when the function is evaluated (while doing endpoint analysis).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In practice, both endpoint analysis and evaluation of derivatives can be used
to check for monotonicity.

In the next section, we show how to constructively use monotonicity
when computing an interval function. However, if endpoint analysis reveals
that a function is monotonic, we already have computed the function; and
no extra sharpness can be obtained by using verified monotonicity.

Suppose we try to prove monotonicity by evaluating a derivative over
an interval. Dependence might cause the computed interval value of the
derivative to contain zero so that monotonicity is not verified. No such
failure can occur using endpoint analysis.

3.6 MONOTONIC FUNCTIONS

Sharp bounds on the range of a function can be computed if the function
is monotonic. Suppose f (x) is a monotonically nondecreasing function in
an interval X = [a, b]. Then f (X) = [f (a), f (b)].

In practice, when rounding is present, we evaluate f (a) and f (b) using
outward rounding and obtain [F(a), F (a)] and [F(b), F (b)], respectively.
Then

f (X) ⊂ [F(a), F (b)].
Thus, we compute bounds on f (X) even in the presence of dependence.
With exact arithmetic, we obtain the exact range of a monotonic function
over an interval.

Using rounded interval arithmetic of sufficiently high precision yields
bounds on f (X) = {f (x) | x ∈ X} that are as accurate as desired when f is
monotonic. Without additional analysis, sharp bounds are rarely computed
for non-monotonic functions. Dependence (see Section 2.4) generally pre-
cludes sharp bounds even if exact interval arithmetic is used.

However, arbitrarily sharp bounds are generally obtained for solutions
to problems such as nonlinear equations and optimization because the in-
tervals involved are successively narrowed during the progression of the al-
gorithms. Therefore, as guaranteed by (3.3.2), bounds of decreasing width
are obtained on the range of a function as the widths of function arguments
decrease. See the algorithms described in later chapters.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Monotonicity can also be used to more narrowly bound the range of
functions of more than one variable. For simplicity, let us assume that
f (x1, · · · , xn) is a monotonically nondecreasing function of x1, · · · , xm

for some m < n, but is not monotonic in xm+1, · · · , xn for xi ∈ Xi

(i = 1, · · · , n). Denote Xi = [ai, bi] for i = 1, · · · , n. Evaluate

f (a1, · · · , am, Xm+1, · · · , Xn)

obtaining [f1, f2] and evaluate f (b1, · · · , bm, Xm+1, · · · , Xn) obtaining
[f3, f4]. Then f (x1, · · · , xn) ∈ [f1, f4] for all xi ∈ Xi (i = 1, · · · , n) .

Note that we can check for monotonicity by evaluating partial deriva-
tives. For example, if

∂

∂xi

f (X1, · · · , Xn) ≥ 0,

then f is a monotonically nondecreasing function of xi for all xi ∈ Xi

(i = 1, · · · , n). When we evaluate a derivative, we generally don’t obtain
its range exactly. Again, this is because of dependence. However, the com-
puted interval contains the range. Therefore, if the computed interval does
not contain zero, neither does the range of the partial derivative. There-
fore, monotonicity can be proved even in the presence of both rounding
and dependence.

Monotonicity can often be used after subdividing an interval into parts
so that a given function is monotonic in one or more subinterval. Mono-
tonicity can also be used even when the function is not monotonic in a given
interval provided the behavior of the function is sufficiently well known.

For example, sin(X) can be evaluated over any given interval X by
evaluating the function at the endpoints only. We need only check whether
the interval contains a point or points where sin(x) is known to have an
extremum.

To illustrate, suppose X = [1, 2]. We find sin(1) < sin(2). We observe
that π

2 ∈ X, and we know that sin(x) is a maximum at π
2 and that sin(π

2) = 1.
Therefore, we obtain sin([1, 2]) = [sin(1), 1]. We can evaluate sin(1) as
accurately as we like and thus compute sin([1, 2]) as accurately as we like.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

3.7 PRACTICAL EVALUATION OF INTERVAL FUNCTIONS

In this section, we consider how an interval function can be evaluated in
practice.

When doing scientific computing with real numbers, we approximate
irrational functions by rational functions. We generally have a list of subrou-
tines available to generate (approximate) values of trigonometric functions,
the exponential function, the logarithm function, etc.

We need a similar list of subroutines in the interval case. Consider
an interval X = [a, b] and suppose we want a subroutine to compute a
sharp single-precision bound on exp(X). Since the exponential function is
monotonic, we know that exp(X) = [exp(a), exp(b)]. One way to compute
the desired sharp interval is as follows.

Evaluate exp(a) using a standard double-precision noninterval arith-
metic subroutine which is guaranteed to produce a value of exp(a) accurate
to more than single-precision. Round the result down to a double-precision
number guaranteed to be a lower bound for exp(a). Then round this in-
termediate double-precision result to the largest single-precision computer
number not exceeding the double precision value of exp(a). This is the
desired left endpoint of exp(X).

Next, evaluate exp(b) using the double precision subroutine. Use the
same two step procedure applied to exp(a) to compute a single-precision
result. Now, however, rounding is upward. This produces the desired right
endpoint of exp(X).

We now illustrate another alternative with a simple example. Suppose
we want to compute arctan(X) and will be satisfied with about three decimal
digit accuracy. We can take advantage of the monotonicity of arctan(x).
However, let us use an approximation found in Fike (1968).

The polynomial

p(x) = x(0.079331x4 − 0.288679x2 + 0.995354) (3.7.1)

approximates arctan(X) for x ∈ [−1, 1]. The error is bounded by

max |p(x) − arctan(x)| < .00061 (3.7.2)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

From this approximation and bound, we have

arctan(X) ∈ p(X) + 0.00061 × [−1, 1] (3.7.3)

for X ∈ [−1, 1] where p(X) is obtained by replacing x with X in (3.7.1).
Our subroutine for computing arctan(X) computes the right member

of (3.7.3) and returns the resulting interval as the “value” of arctan(X).

When evaluating p(X) in practice, we do not use the form given by
(3.7.1). Instead, we complete the square and write

p(X) = X[0.079331(X2 − 1.81946)2 + 0.732734] (3.7.4)

to reduce the number of occurrences of the variable X and thus produce
sharper results. See Section 3.3.

We make rounding errors when deriving (3.7.4) from (3.7.1). We must
assure that (3.7.2) remains true when p is written in the form (3.7.4). An
easy way to do so is to compute the coefficients in (3.7.4) from (3.7.1)
as intervals. This illustrates the extra care that must be taken in writing
interval subroutines to bound the range of irrational functions.

As an illustrative example, let us evaluate the function

f (x) = x2 + arctan

[
sin(x)

x

]

with x replaced by the interval X = [1, 2]. To do so, let us define and
evaluate the following functions:

f1(x) = sin(x),

f2(x) = f1(x)

x
,

f3(x) = arctan[f2(x)].

Then

f (x) = x2 + f3(x).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We first evaluate f1(X) by calling a subroutine that computes sin(X). This
subroutine can use the monotonicity properties of sin(x) as is done above
for exp(x). Alternatively, it can use an appropriate rational approximation
(with error bound) as is done above for arctan(x). As shown in Section
3.6, the desired interval sin([1, 2]) = [sin(1), 1]. An interval containing
[sin(1), 1] is returned. Thus, suppose the interval [0.84147, 1] is returned
and becomes the “value” of f1(X).

To compute f2(X), we simply divide our value of f1(X) by X using
interval arithmetic. We obtain (using six decimals)

f2(X) = [0.420735, 1].

Next, we call the subroutine to evaluate arctan[f2(X)]. If the subroutine
uses (3.7.3), we obtain

f3(X) = [0.303230, 0.958296].

For our final step, we add X2 to f3(X) using interval arithmetic. We
obtain

f (X) = [1.30323, 4.95830].

This result is not sharp. We lost sharpness because of dependence. Also,
(3.7.3) is only accurate to about three decimals. See (3.7.2). The range of f

over X rounded outward to six decimals is [1.69952, 4.42672]. However,
the final result contains the range as promised by the fundamental Theorem
3.2.2 of interval analysis.

Note that we used outwardly rounded interval arithmetic throughout
the computation. This assures that the computed result contains the range
of f (x) despite the presence of rounding errors.

Note, also, that computing the interval f (x) involves essentially the
same operations as evaluating f (x) using real arithmetic. In each case, we
use available subroutines to compute irrational functions. These routines
are written in much the same way in either the interval or noninterval case.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

3.8 THICK AND THIN FUNCTIONS

We can distinguish two types of interval functions. Suppose we evaluate
a function using infinite precision interval arithmetic. Assume the func-
tion involves only degenerate interval parameters1. If the argument of the
interval function is a degenerate interval, the “value” of the function is
also degenerate if the function is an interval extension of its arguments and
parameters. We call such a function “thin”.

Suppose, however, that the function involves an interval parameter of
nonzero width. If we evaluate such a function using exact interval arithmetic
over a degenerate interval, the value of the function is a nonzero-width
interval. For example, if we evaluate f (X) = X+[1, 2] over the degenerate
interval X = [0, 0], we obtain the nondegenerate result [1, 2]. We call such
a function “thick”.

In most of this book, we discuss functions as if they are thin. We
usually consider functions that arise as noninterval functions and this, of
course, implies that they do not contain interval parameters. For example,
our primary concern is to find zeros of functions and to find global minima
of functions that arise in a noninterval context. We merely use intervals to
solve such problems.

The algorithms that we discuss also serve to solve problems involving
thick functions. In this case, a solution is generally an extended set of
points instead of a single point. Unless otherwise stated, we assume for
simplicity that functions are thin or “nearly thin” so that extended solutions
are of reasonably narrow width. Special methods involving “very thick”
functions are discussed separately in various sections. For example, see
Chapter 17.

In many practical computations, however, input data are inexact and
are input as intervals to bound their true value. See for example:

http://physics.nist.gov/cuu/Constants

for internationally recommended values of fundamental physical constants.
Even if data are exact, they might not be machine-representable. If round-

1A function’s parameter is a fixed constant that therefore cannot depend on any of the
function’s arguments.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

ing is necessary because real or interval data are input, they must be rounded
outward. In addition, (outward) rounding as a result of interval computing
causes a thin function to become thick. Therefore, we sometimes distin-
guish between exact and rounded interval arithmetic.

In Chapter 17 and in various other places in this book, we explicitly
consider perturbed or thick functions. Results from the analysis of problems
with narrow width parameters and subdivision can be used to compute and
display narrow interval bounds on solution sets to problems with large
numbers of arbitrarily thick parameters. Thus concentrating attention on
problems with no parameters or thin parameters is not limiting in practice.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 4

CLOSED INTERVAL
SYSTEMS

4.1 INTRODUCTION

Interval algorithms for solving nonlinear systems of equations and global
optimization problems can be more general, simple and efficient if the
interval arithmetic system used to implement them is closed. A closed
system (or a system that is closed1 under a set of arithmetic operations)
is one that contains no undefined operator-operand combinations, such as
division by zero in the real number system. How closed systems provide
these benefits is described in Section 4.2.

Closed interval systems are a step in the evolution of mathematical
systems starting with the positive integers. Each step in this evolution
was motivated by a requirement to perform operations that are undefined
in the earlier system. For example, in the system of positive integers the
difference 3−3 is undefined. This fact motivated adding zero to the system
of positive integers. Similarly, fractions motivated rational numbers and
square (and other) roots of positive rational numbers motivated irrational
numbers. Roots of negative real numbers motivated complex numbers.

1The word “closed” is used in analysis and topology. In analysis, a closed system
produces only members of the system. An interval [a, b] that includes its endpoints is
topologically closed. An open interval (a, b) does not include the endpoints a or b.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Throughout this evolution, division by zero, operations on infinite val-
ues such as +∞ − (+∞) or +∞

+∞ , and other indeterminate forms have
remained undefined. The real interval system was built up from sets of real
numbers and operations on them. As a consequence, existing limitations
in the real point system were inherited by the real interval system.

There is an alternative development path. Because intervals are sets
of real numbers, it is possible to first consider building systems of sets
of extended real numbers including infinite values. These systems can be
closed. Intervals can then be constructed from the convex hulls of sets
of extended reals. If this is done, the resulting interval systems are closed.
This chapter describes one such closed interval system. It is consistent with
both the existing real interval system and with basic arithmetic operations
(BAOs) on all possible operands including those that lead to indeterminate
forms.

Different closed cset-based systems all have these properties, but they
differ in the width of computed intervals and the complexity of their defini-
tions. The system described herein is a compromise between the simplest
system currently implemented in Sun Microsystems’Fortran and C++ com-
pilers, and more sophisticated and narrow systems described in Walster,
Pryce, and Hansen (2002).

Because closed arithmetic systems contain no undefined operator--
operand combinations, their implementation on a computer can never pro-
duce “exceptional events”. This means that all arithmetic operations on
intervals containing infinities and zero can be defined. Consequently, com-
puter hardware and software can be simpler because exceptional event han-
dling is unnecessary, even for arguments outside a function’s domain of
definition.

New analysis is required for arithmetic on infinite intervals to be consis-
tent with arithmetic on finite intervals and with the axioms of real analysis.
Let R = {z | −∞ < z < +∞} denote the set of real numbers. The closed
interval system described herein includes all extended intervals with end-
points in the set of real numbers, but augmented with plus and minus infinity.
That is, the set of extended real numbers is R∗ = R ∪ {−∞, +∞} , which
is also the topologically closed interval [−∞, +∞] . See Section 4.8.1.
This chapter contains the main results of this new analysis along with the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

principles that motivate its form. Mathematical details and other possible
systems are presented in referenced papers.

The idea of using sets as the basis for interval analysis is discussed in
Section 4.3. The critical concepts of the containment constraint and the
containment set are introduced in Sections 4.4 and 4.5. Arithmetic over the
extended real numbers is presented in Section 4.6. Closed interval systems
are defined in Section 4.7. The fundamental theorem of interval analysis is
extended to the closed interval system in Section 4.8.

4.2 CLOSED SYSTEM BENEFITS

A number of characteristics can be used to evaluate different interval sys-
tems and the algorithms they produce. These include: generality, speed,
and interval width. Using these characteristics, this section describes pos-
itive features of closed interval systems.

4.2.1 Generality

If algorithms are more general, they are usually simpler and require fewer
special-case branches. The same is true for interval systems: Generality is
good.

Algorithms that use the closed interval system accept more inputs and
are therefore more general because:

• Defensive code is not needed to avoid exceptional events, such as
division by intervals containing zero.

• Arguments that are partially or totally outside a function’s natural
domain of definition are accepted.

• Intervals with infinite endpoints are included in the arithmetic system
and therefore can be used in algorithms.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

• Interval expressions2 need not be inclusion isotonic interval exten-
sions for them to be covered by the extended fundamental theorem
of interval analysis (Theorem 4.8.14 on page 77).

• Interval expressions can be used to bound the range of both single-
valued functions (Chapter 3) and multi-valued relations.

A possible objection to closed interval systems is that their benefits
come at the cost of being unable to detect when an expression either is not
defined, or is discontinuous. This objection is groundless. When there is a
requirement for a function to be defined over a given interval, this can be
enforced by introducing explicit constraints that delete points outside the
function’s natural domain. For example the appearance of ln (g (x)) in a
composition imposes the implicit constraint that g (x) ≥ 0.

When the continuity assumption is required, three approaches are pos-
sible:

1. Introduce explicit constraints that enforce the assumption by deleting
points of discontinuity;

2. Work instead with a continuous version of the discontinuous function;
or

3. Use Theorem 4.8.15 to test for continuity over any given interval, or
impose a continuity constraint.

The first option can be easily implemented if the given function is avail-
able for analysis. The second alternative is described in Walster (2003a) and
can be used when discontinuities arise at branch cuts. The third alternative
can be automated and does not require knowing the given function. How-
ever, an enclosure of the function’s derivative is required. These methods
can be used to eliminate the requirement for defensive code to guarantee
algorithm assumptions are satisfied when using an exception-free closed
interval system. Also see Section 4.8.5.

2Throughout this book, the term “expression” refers to any sequence of arithmetic op-
erations, and/or compositions of single-valued functions and multivalued relations. In this
chapter, the term “function” is reserved for single-valued mappings of points onto points.
The concept of an interval function is discussed in Chapter 3.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

4.2.2 Speed and Width

A good interval system facilitates writing algorithms that quickly produce
narrow-width results. Algorithm speed generally increases whenever the
width of computed intermediate intervals is reduced. This can even be true
when local speed is significantly decreased. For example, Corliss (1995)
developed an interval ordinary differential equation integration algorithm
in which speed decreased by a factor of 200 to compute narrow intervals
using methods described in Corliss and Rall (1991) pages 195–212. Ul-
timately, overall algorithm speed was increased by a factor of 2 because
of the above decrease in interval width. Thus, it is generally good interval
algorithm development practice to optimize the performance of relatively
large algorithms rather than to focus on the runtime performance of small
code fragments. The reason is that the relationship between overall interval
algorithm speed and intermediate interval result-width can be complicated.

All other things being equal, “more is better” when it comes to speed.
However, there can be “too much of a good thing” with narrow width. The
quest for narrow width or speed must never come at the cost of the failure
to contain the set of required results. This set is called the containment
set of a given expression. Failure to enclose an expression’s containment
set in a computed interval is a containment failure. Interval systems must
not produce a containment failure by violating the containment constraint.
Interval algorithms can be slow and produce wide intervals, but they must
always satisfy the containment constraint.

Interestingly, the containment set of some expressions is not always
clearly defined in finite interval systems. Closed interval systems precisely
define containment sets, thereby making clear what is required to produce a
sharp (narrow as possible) interval result. The containment-set concept is so
fundamental to computing with intervals that the collection of containment-
set results is known as containment-set theory. The term “containment set”
is abbreviated “cset”, so the study of csets becomes “cset theory”.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

4.3 THE SET FOUNDATION FOR CLOSED INTERVAL SYS-
TEMS

Finite interval arithmetic, as introduced by Moore (1966) and briefly de-
scribed in Chapters 2 and 3, is based on intervals of real numbers. As such,
finite interval arithmetic inherits the assumptions, axioms, and limitations
of real analysis. Intervals have a dual identity both as numeric entities and
as sets. Recognizing this duality is not new. See Moore (1966). What is
new is the recognition that because intervals are sets of numbers, the fun-
damental analysis of intervals can be based on sets as opposed to individual
real numbers. See Walster (1996). It is the set-theoretic interval foundation
that enables limitations of real and finite interval analysis to be removed.

The set-based development of interval arithmetic, together with addi-
tional motivation and justification, are described in the following sections.
The motivation for the set-based development is to produce a closed inter-
val system in which there are no undefined operand-operator combinations.
As a consequence, expressions can be algebraically transformed even by a
compiler without regard to the consequences of division by zero or other
induced indeterminate forms. The objective of such transformations is nar-
row width and speed, but the transformed expression’s cset must enclose
the original expression’s cset. Two expressions with the same cset are said
to be cset-equivalent expressions. See page 53 in Section 4.5.2.

4.4 THE CONTAINMENT CONSTRAINT

For all finite intervals, X and Y, interval arithmetic operations must satisfy:

X • Y ⊇ {x • y | x ∈ X, y ∈ Y } , (4.4.1)

where • ∈ {+, −, ×, ÷} . Because division by zero is undefined for real
numbers, division by intervals containing zero is undefined in the finite
interval system (See Chapter 2).

Bold letters x and xI are used to denote respectively, an n-dimensional
point (x1, · · · , xn)

T and an interval vector or box (X1, · · · , Xn)
T .

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

To be valid, any interval numerical evaluation F of a real function f of
n-variables must satisfy:

F
(
xI
) ⊇ {

f (x) | x ∈ xI
}
. (4.4.2)

Clearly, (4.4.1) is a special case of (4.4.2).
The fundamental requirement in (4.4.2) of any interval arithmetic sys-

tem is referred to as the containment constraint of interval arithmetic. Sat-
isfying this constraint is necessary to produce rigorous bounds, the key to
numerical proofs, such as those produced by the algorithms in this book.
Because this constraint is so obvious and simple, it was never even named
until the possibility of extending it to include infinite intervals became ev-
ident.

4.4.1 The Finite Interval Containment Constraint

In finite interval arithmetic, the containment constraint requires computed
intervals to contain the set of all possible real results, as defined by the right
hand side of (4.4.2). To close interval systems, the containment constraint
concept must be extended to include point operations and functions that are
normally undefined in real arithmetic.

4.4.2 The (Extended) Containment Constraint

For points within the domain of real BAOs and functions, the existing
containment constraint must not be changed. Rather, the existing definition
must be extended to include otherwise undefined interval operation-operand
and function-argument combinations.

The approach taken is to almost, but not quite, beg the question of the
extended containment constraint’s definition. Rather than focusing only
on the containment constraint of any single expression, consideration is
broadened to include the set of all possible containment constraints that
result from any algebraic transformation of the given expression. By mak-
ing this one simple change, the door is opened to the extended containment
constraint definition. When algebraically transformed, the result of any

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

expression evaluation must not cause the transformed expression’s con-
tainment constraint to be violated. This is the key that unlocks the door to
the needed generalization.

The containment set of an expression is now introduced and extended.

4.5 THE (EXTENDED) CONTAINMENT SET

When evaluated over a box xI = (X1, · · · , Xn)
T in the finite interval sys-

tem, the containment set that a function f must contain is given by the
right-hand side of (4.4.2) and is conveniently denoted by f

(
xI
)
. That is

f
(
xI
) = {

f (x) | x ∈ xI
}
. (4.5.1)

The containment set (or cset) of any expression (whether a single-valued
function or a multi-valued relation) is the set of possible values the given
expression can take on. Thus, the cset of a given expression is the union of
the csets of all possible algebraic transformations of the given expression.
For example, suppose g (x) is an algebraic transformation of the given
expression f (x). Then evaluating g must not violate f ’s containment
constraint. The motivation is to permit f to be replaced by g. See, for
example, f and g in Section 4.5.2. An equivalent way of stating this is that
algebraically equivalent expressions must have the same csets. A trivial
way to guarantee this is to let the cset of every expression be the interval
[−∞, +∞] , but this is not useful. Therefore an additional restriction
on the cset of an expression is required: An expression’s cset must be
the smallest possible set that satisfies the given expression’s containment
constraint and the containment constraint of all the expression’s possible
algebraic transformations.

4.5.1 Historical Context

Various authors (including Hanson (1968) and Kahan (1968), and more re-
cently Hickey, Ju and Van Emden (1999)) have proposed generalizations of
finite interval arithmetic in unsuccessful attempts to extend interval arith-
metic. Others (including Ratschek and Rokne (1988), while developing

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

conventions to support infinite starting box-widths in global optimization)
have come close to discovering how to close interval systems. The paper by
Walster, Pryce, and Hansen (2002), is the first to contain a mathematically
consistent3 system that holds for all extended real expression arguments.
Extending the containment constraint and cset concepts is required.

4.5.2 A Simple Example: 1
0

A simple example illustrates how the cset and containment constraint con-
cepts permit otherwise undefined operations to be given consistent csets.
Consider the problem of defining the cset of 1

0 . In the real analysis of points,
division by zero is undefined. A reason is that the resulting value turns out
to be a set, not a point.

Temporarily, ignore the fact that the cset is not defined until Section
4.5.5. Consider instead:

f (x) = x

x + 1
. (4.5.2)

If x = 0, f (0) = 0
1 = 0. However, suppose x is replaced by an interval.

To eliminate excess interval width caused by dependence as described in
Section 2.4 (see also Section 3.3), an astute interval analyst will choose to
compute an interval enclosure of f (x) using the algebraically equivalent
expression:

g (x) = 1

1 + 1
x

. (4.5.3)

An interval extension of (4.5.3) often produces narrower results than does
an interval extension of (4.5.2). The reason is because the dependence from
multiple occurrences of the variable x is avoided in (4.5.3). See Section

3An arithmetic system is consistent if there are no contradictory operand-operator com-

binations. For example, if 1
0 were defined to be 1, then g (0) = 1

2
in (4.5.3). However, this

contradicts the fact that f (0) = 0 in (4.5.2).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

2.4. However, when x = 0, (4.5.3) is undefined because 1
0 is undefined.

Therefore, whenever the interval X contains zero, the interval expression

g (X) = 1

1 + 1
X

(4.5.4)

is also undefined in the finite interval system.
To make matters worse, both f (−1) and g (−1) are also undefined.

Therefore, both their interval extensions are undefined for any interval ar-
gument X that contains −1. One way to motivate the closed interval system
is to determine how h (x) = 1

x
can be defined so that g (x) = f (x) when-

ever f (x) is defined, and also to consistently define g (x) and f (x) when
x = −1.

Let Df and Dg denote the natural domains (or simply the domains) of
the expressions f and g — that is, Df and Dg are, respectively, the sets
of arguments for which f and g are defined and finite. The following facts
are known:

1. Because their domains are different, the functions f and g are differ-
ent. Using R to denote the set of real numbers {z | −∞ < z < +∞} ,

and M\N to denote the complement of the set N in M (or all the
points of M not in N):

Df = {−∞ < x < −1} ∪ {−1 < x < +∞}
= R\ {−1} ,

and

Dg = {−∞ < x < −1} ∪ {−1 < x < 0} ∪ {0 < x < +∞}
= R\ {−1, 0} .

2. Let x0 denote a specific value of the variable, x. As long as x0 ∈
Df ∩Dg (so both f (x0) and g (x0) are defined) then f (x0) = g (x0).

3. “Algebra” includes the set of transformations through which g and
f can be derived from each other with f (x) = g (x) for all x ∈
Df ∩ Dg.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In the present context, extending the definition of an expression’s cset
provides a consistent definition for the cset of both f and g that applies for
all values of x, whether finite or infinite. With this definition, f and g are
seen to have identical csets for all extended real values of x. When any two
expressions have identical csets for all possible arguments, the expressions
(in this case f and g) are said to be cset-equivalent. This is yet another
important new construct. Cset-equivalent expressions can be interchanged
without fear of violating their common containment constraint. The choice
of which cset-equivalent expression to compute can be freely made on the
basis of width and speed. This is the principle practical consequence of,
and motivation for, cset theory.

4.5.3 Cset Notation

Denote the cset of the expression f evaluated at all the points x0 in the set
S :

cset (f, S) .

The zero subscript on x is used to connote the fact that an expression’s cset
depends on the specific value(s) of the expression’s argument(s).

For convenience and without loss of generality, the following develop-
ment uses scalar points and sets, rather than n-dimensional vectors. When
the set S is the singleton set {x0} and x0 ∈ Df , then

cset (f, {x0}) = {f (x0)} .

The notation {f (x0)} denotes the value of the function f, but viewed as a
singleton set. Whether x0 is inside or outside the domain of f, it is notation-
ally convenient to permit “f (x0)” to be understood to mean cset (f, {x0}) .

Otherwise, a plethora of braces “{· · · }” is needed to distinguish points from
singleton sets. Therefore, for example, when x0 = 0 in (4.5.3), it is under-
stood that

g (0) = cset (g, {0}) .

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

There is an additional bit of notation that is necessary to explicitly con-
vey how csets of expressions with non-singleton set arguments are defined:
When the set S is not a singleton set, then f (S) = cset (f, {S}) is under-
stood to be the set:

⋃

z0∈{S}
f (z0) =

⋃

z0∈S

cset (f, {z0}) . (4.5.5)

The reason for using the union to define f (S) in (4.5.5) is that f (z0) is
now a set. Therefore, {f (z0) | z0 ∈ S} is properly interpreted as a set of
sets, rather than cset (f, S) . The expression in (4.5.5) for f (S) is exactly
analogous to the definition of f

(
xI
)

in (4.5.1) when xI is a nondegenerate
interval vector. Note the difference in notation between the set S of scalars
and the interval vector xI. See Section 2.2.

Finally, when it is important to distinguish between a variable x and
a value x0 of it, the zero subscript notation is used. Otherwise, let it be
understood that the point arguments of expressions in csets are specific
given values and not simply the names of variables.

4.5.4 The Containment Set of 1
0

With the above notation conventions, the value of the containment set (cset)
of 1

0 is now addressed. Continue to use the expression definitions: f (x) =
x

x+1 and g (x) = 1
1+ 1

x

in (4.5.2) and (4.5.3). The question to be answered is:

What is the smallest set of values (if any) that can be assigned to h (x) = 1
x

when x0 = 0 so that g (x0) = 0. In fact the only way for g (x0) to equal zero
is if h (x0) = −∞ or +∞. Therefore {−∞, +∞} is the set of all possible
values that the cset of h (x0) must include when x0 = 0. Moreover, when
x0 = 0, if the cset of h (x0) includes any value other than −∞ or +∞, then
g (x0) �= 0. Therefore, a mathematically consistent way for g (0) to equal
zero is if

1

0
= {−∞, +∞} . (4.5.6)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In this case, if

h (x) = 1

x
, (4.5.7)

then because h (0) is understood to mean cset (h, {0}) , when h (x) is oth-
erwise undefined,

h (0) = {−∞, +∞} .

Then and only then (in the current cset system) is

g (0) = 1

1 + {−∞} ∪ 1

1 + {+∞}
= 0.

Having informally established (4.5.6), both f (−1) and g (−1) are seen to
be {−∞, +∞} as well. That g (−1) = {−∞, +∞} can also be seen by
writing g in terms of h as defined in (4.5.7):

g (x) = h (1 + h (x)) .

Similar arguments to that given above can be developed to find the cset
of any indeterminate form in any closed cset-based system.

4.6 ARITHMETIC OVER THE EXTENDED REAL NUM-
BERS

For a rigorous development of csets, see Walster, Pryce, and Hansen (2002).
With their development and/or analyses similar to that of 1

0 above, csets for
the basic arithmetic operations (BAOs) displayed in Tables 4.1 through 4.4
have been derived and proved to be consistent in R∗; where R denotes the
real numbers {z | −∞ < z < +∞} , and the set of extended real numbers
R∗ is the set of real numbers to which the elements {−∞} and {+∞} are

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

adjoined. This compact4 set is the same as the interval [−∞, +∞] and is
also denoted:

R∗ = R ∪ {−∞, +∞} .

In each of tables 4.1 through 4.4, the upper left corner cell contains the
given operation in terms of specific values x0 and y0 of the variables x and
y. The first column and first row in each table contains the values of x0 and
y0 for which different cset values are produced.

The value of 1
0 discussed above is found in Table 4.4.

4.6.1 Empty Sets and Intervals

To close the set-based arithmetic system, it is necessary to define arithmetic
operations on empty sets. The logically consistent definition is for an
arithmetic operation to produce the empty set if one or both operands is
empty. This result is consistent with (4.5.5) and is also consistent with the
implicit constraint that the arguments of any expression E must be within
or at least on the boundary of E’s domain of definition, DE. This implicit
constraint can be made explicit to limit values of independent variables in
different expressions. For example, if X = [−∞, +∞] and Y = √

X − 1,

then 0 ≤ X − 1 or X ≥ 1. If in addition Z = √
1 − X, then 0 ≤ 1 − X or

X ≤ 1. Therefore, the only way both Y and Z can be defined is to impose
the constraint on X that X = [1, 1], in which case: Y = Z = [0, 0] .

More generally, for any expression E that appears as the argument of a
function whose domain is a proper subset of R∗, an implicit constraint on the

values of E is imposed. For example, with E = x
x+1,

, the expression
√

E

imposes the constraint on x that x ∈ [−∞, −1] ∪ [0, +∞] . In algorithms
such as those in this book that delete impossible solutions, such constraints
can be useful when made explicit. See Chapter 10. The following is a

4Compactness is necessary for all needed sequences of R∗ elements to have limits. Com-
pactness of R∗ is established in Walster et al (2002) by noting that the interval [−∞, +∞]
can be mapped onto the compact interval [−1, +1] using, for example, the hyperbolic
tangent function.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

x0 + y0 −∞ y0 ∈ R +∞
−∞ −∞ −∞ R∗

x0 ∈ R −∞ x0 + y0 +∞
+∞ R∗ +∞ +∞

Table 4.1: Addition over the extended real numbers.

x0 − y0 −∞ y0 ∈ R +∞
−∞ R∗ −∞ −∞

x0 ∈ R +∞ x0 − y0 −∞
+∞ +∞ +∞ R∗

Table 4.2: Subtraction over the extended real numbers.

x0 × y0 −∞ y0 ∈ − (R∗)2 0 y0 ∈ (R∗)2 +∞
−∞ +∞ +∞ R∗ −∞ −∞

x0 ∈ − (R∗)2 +∞ x0 × y0 0 x0 × y0 −∞
0 R∗ 0 0 0 R∗

x0 ∈ (R∗)2 −∞ x0 × y0 0 x0 × y0 +∞
+∞ −∞ −∞ R∗ +∞ +∞

Table 4.3: Multiplication over the extended real numbers.

x0 ÷ y0 −∞ y0 ∈ − (R∗)2 0 y0 ∈ (R∗)2 +∞
−∞ [0, +∞] +∞ {−∞, +∞} −∞ [−∞, 0]

x0 ∈ R− {0} 0 x0 ÷ y0 {−∞, +∞} x0 ÷ y0 0

0 0 0 R∗ 0 0
+∞ [−∞, 0] −∞ {−∞, +∞} +∞ [0, +∞]

Table 4.4: Division over the extended real numbers.

Note that − (R∗)2 = [−∞, 0]2 and (R∗)2 = [0, ∞]2.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

source of implicit constraints that must be made explicit. If the interval
version of Newton’s method is used to find roots of a function f over an
interval X, then f must be defined and continuous over X. See Chapter 9.

Another possibility (to explicitly impose a continuity constraint) is men-
tioned in Section 4.2.1. For example, because zero is a point of discontinuity
for the expression 1

x
, if this expression is used in a context where continuity

is assumed, then the implicit constraints (x < 0 and x > 0) on x can be
made explicit. See also Section 4.8.5.

4.6.2 Cset-Equivalent Expressions

Two expressions that have the same csets for all possible expression argu-
ments are said to be cset-equivalent. Two cset-equivalent expressions can
be interchanged without fear of violating their containment constraints. For
example,

f (x) = x

x + 1

and

g (x) = 1

1 + 1
x

,

can be interchanged without loss of containment because f and g are cset-
equivalent expressions. In fact, any cset enclosure of g can be used to
bound values of f . This example illustrates an important general result: A
necessary condition for an analyst or a compiler to substitute one expression
g for another f , is that g is a cset-enclosure of f. See Definition 4.8.12.

4.7 CLOSED INTERVAL SYSTEMS

A closed system is one in which there are no undefined operator-operand
or function-argument combinations. All that is necessary to construct a
closed interval system is to guarantee that any interval expression evaluation
produces an enclosure of the expression’s cset. If the resulting interval

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

is the hull of the expression’s cset, then the computed interval is sharp.
For example, hull ({−∞, +∞}) = [−∞, +∞] is the narrowest interior
interval containing 1

0 . In practice (for example when implementing the

interval Newton algorithm in Section 9.2), the fact that 1
0 = [−∞, −∞] ∪

[+∞, +∞] is used, whether or not the interval system supports exterior
intervals5.

More generally, when evaluated over the interval box

xI = (X1, · · · , Xn) ,

the usual notation can be used for the set that an enclosure F of the expres-
sion f must contain:

F
(
xI
) ⊇ hull

(
f
(
xI
))

.

Upper case F denotes an interval enclosure, for example, as can be obtained
by evaluating the expression f using finite precision interval arithmetic.
Thus, F is not uniquely defined, except to the extent that it must satisfy the
containment constraint of interval arithmetic. The notation distinguishes
between: hull

(
f
(
xI
))

, which is the sharp interval enclosure of f ’s cset

over the box, xI; and F
(
xI
)
, which is only an enclosure of hull

(
f
(
xI
))

,

and which therefore might be less than sharp.
Adopting the mathematically standard zero-subscript notation (e.g.: x0)

to denote a specific, but unspecified value of the variable x, let it be un-
derstood that F (x0) , rather than F ([x0, x0]) or F ({x0}) , can be used to
denote an interval expression evaluated at the degenerate interval [x0, x0] ,

or equivalently at the singleton set {x0} .

4.7.1 Closed Interval Algorithm Operations

Different closed interval implementations of the same cset system are pos-
sible to construct. They can produce different width enclosures of interval
expression csets, but they all must produce enclosures of:

5An exterior interval is the union of two semi-infinite intervals, such as [−∞, a] ∪
[b, +∞] with a < b. The notion of exterior intervals was first conceived by Kahan (1968).

Alefeld (1968) was the first to use division by intervals containing zero to extend the
interval version of Newton’s method to find all the roots of nonlinear functions.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

1. BAO csets, that (in the present system) are given in Tables 4.1 through
4.4; and

2. the csets of expressions evaluated over sets as given in equation
(4.5.5).

All the definitions of finite interval arithmetic in Section 2.3 carry over to
closed systems because the cset of a defined function is simply the defined
function’s value, but viewed as a singleton set. The cases that require
additional analysis are those that implicitly or explicitly use undefined point
operations, such as (±∞) − (±∞) , 1

0 , 0 × (±∞) , and ±∞
±∞ .

It is a tempting mistake to conclude that each of the following three
examples is non-negative, because there is no obvious way to produce a
negative result:

[0, 1] × [2, +∞] = [0, +∞] , (4.7.1a)

[1, 2]

[0, 1]
= [1, +∞] (4.7.1b)

and

[0, 1]

[0, 1]
= [0, +∞] . (4.7.1c)

Combining the rules of interval arithmetic in Section 2.3 with csets from
Tables 4.1 through 4.4 produces the correct results, which are:

[0, 1] × [2, +∞] = [−∞, +∞] , (4.7.2a)

[1, 2]

[0, 1]
= {−∞} ∪ [1, +∞] (4.7.2b)

and

[0, 1]

[0, 1]
= [−∞, +∞] . (4.7.2c)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In two out of the above three cases, it works to compute interval end-
points using the formulas in Section 2.3 and csets from Tables 4.1 through
4.4. For example, [0, 1] × [2, +∞] = R∗, because 0 × (±∞) = R∗ from
Table 4.3. The exception is division by an interval with zero as an interior
point, such as happens with

[1, 1]

[−1, 1]
. (4.7.3)

However, by splitting the denominator interval into the union of two interior
intervals, both of which have zero as an endpoint, the entries in Table 4.4
and the formulas in Section 2.3 interact to produce the sharp result. From
(4.5.5) and the entries in Table 4.4, Section 4.6 page 81

cset (÷, (1, [−1, 1]))

= cset (÷, (1, [−1, 0])) ∪ cset (÷, (1, [0, 1])) (4.7.4a)

= ([−∞, −1] ∪ {+∞}) ∪ ({−∞} ∪ [1, +∞]) (4.7.4b)

= [−∞, −1] ∪ [1, +∞] . (4.7.4c)

From BAO csets with extended interval operands, different closed in-
terval arithmetic systems are possible to implement. They differ in how
narrowly BAO csets are enclosed. For example, if exterior intervals are
not explicitly supported, then the result of computing (4.7.3) is the hull of
(4.7.4c), which is R∗. Walster (2000) proposed a “Simple” closed interval
system that has been fully implemented in Sun Microsystem’s Fortran 95
and C++ compilers. See Walster (2002).

Interval algorithms, including those in the remainder of this book, can
be realized in any closed interval system using the extended BAOs displayed
in Tables 4.1 through 4.4, or their equivalent in other different cset-based
systems. To accomplish this, the fundamental theorem of interval analy-
sis (Theorem 3.2.2) is generalized in Theorem 4.8.13 to include csets and
rational expressions. Finally, using the closed interval system, this more
general fundamental theorem is further extended in Theorem 4.8.14 to in-
clude irrational composite expressions.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

With compiler support for interval data types in a closed interval system,
the mechanics of writing code to implement interval algorithms is easier
in some important respects than writing noninterval programs. See, for
example Walster (2000b, 2000c) and Walster and Chiriaev (2000). Gener-
alizing and extending the fundamental theorem completes the theoretical
foundation for the compiler support of interval data types in closed interval
systems.

4.8 EXTENDED FUNDAMENTAL THEOREM

So far in the above development, closed interval systems are limited to the
BAOs. As described in Chapter 3, repeated application of the fundamental
theorem to compositions of finite BAOs proves that over the argument
intervals, computed rational functions using interval arithmetic produce
bounds on the value of the underlying rational function. Closing interval
systems requires the following extensions to the fundamental theorem:

• extending function values to expression csets,

• extending csets to their enclosures, and

• removing the requirement that computed expressions be inclusion
isotonic interval extensions.

At the same time these extensions are made, the fundamental theorem is
further extended to any expressions, whether a single-valued continuous
function with finite domain that is a subset of the real numbers, or a multi-
valued relation that is always defined. Examples of single-valued continu-
ous functions include the log or square root functions. A simple example
of a multi-valued relation is a single-valued function to which is added a
nondegenerate interval constant.

4.8.1 Containment Sets and Topological Closures

In this and the following two subsections, the explicit notation, cset(f, x0)

is used. This is necessary to clearly distinguish between a function and its

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

cset. The implicit notation in which f (x) represents its cset is resumed in
Section 4.8.4 for the statement and proof of Theorem 4.8.14 on page 77.
The notation used throughout remaining chapters is described in Section
4.9.

When an expression is a function with a non-empty domain (the con-
verse case is treated in Section 4.8.2), the function’s topological closure is
the function’s cset if the function is undefined at the given point, say x0.
Note that a function’s closure is not the same concept as a closed system.
The closure of a set S, denoted S in this chapter6, is the union of the set S

and all its accumulation points.

Definition 4.8.1 The closure of the expression f, evaluated at the point
x0 is denoted f (x0) , and is defined to be the set of all possible limits of
sequences

{
yj

}
, where yj = f

(
xj

)
and

{
xj

}
is any sequence converging

to x0 from within f ’s domain Df . Symbolically,

f (x0) =




z

∣
∣
∣
∣
∣
∣

z = limj→∞ yj ,

yj ∈ f
(
xj

)
7, and

limj→∞xj = x0





. (4.8.1)

The closure of f is always defined, but might be the empty set. Namely,
for yj to exist, f

(
xj

)
must be non-empty, which, by definition of f ’s

domain, means that xj ∈ Df . Therefore, if x0 /∈ Df , or if Df = ∅, there

are no sequences
{
xj

}
, hence no yj , and f (x0) is empty. The domain of

f is the set of argument values x0 for which f (x0) �= ∅, which is Df , the
closure of f ’s domain. Using the compactness of R∗, Walster, Pryce, and
Hansen (2002) proved that f (x0) is never empty if Df �= ∅ and x0 ∈ Df .

6In this chapter the notation S denotes the closure of the set S. Readers should not confuse

this commonly used mathematical notation with the interval notation X = [
X, X

]
. The

former is only used in this chapter. The latter is used in the remaining chapters of this book
to denote the infimum and supremum of the interval X.

7Note that the f
(
xj

)
are single valued, so for xj ∈ Df , this sequence is well defined.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Therefore,

Df = Df . (4.8.2)

Definition 4.8.1 imposes no restriction on the point x0 other than x0 ∈ R∗.
When x0 is on the boundary of f ’s domain (or x0 ∈ Df \Df), the closure

of a function satisfies all the requirements imposed on the function’s cset.
This result is also proved in Walster, Pryce, and Hansen (2002).

The examples below illustrate features of cset theory at points in Tables
4.1 through 4.4 where the normal value is not defined. All sequences are
indexed by n → +∞.

Example 4.8.2

The expression (+∞) + (−∞) is the set of all lim (xn + yn)

where both xn → +∞, and yn → −∞. Any finite limit a can
be achieved (e.g. xn = a + n, yn = −n) as well as ±∞ (e.g.
xn = ±2n, yn = ∓n), so

(+∞) + (−∞) = R∗. (4.8.3)

Example 4.8.3

The expression 0 ÷0 is the set of all lim (xn ÷ yn) where yn <

0, or yn > 0, and both xn → 0 and yn → 0. Any finite limit
a can be achieved (e.g. xn = a

n
, yn = 1

n
) as well as ±∞ (e.g.

xn = ± 1
n
, yn = ± 1

n2), so

0 ÷ 0 = [−∞, +∞] . (4.8.4)

Example 4.8.4

Leta > 0 be finite. Thena÷0 is the set of all lim
(

a
±xn

)
,where

xn > 0 and xn → 0. If xn = 1
n
, then lim

(
a

±xn

)
= lim (±an) ,

so for any finite a > 0

a ÷ 0 = {−∞, +∞}. (4.8.5)

This result implies, for instance, that 1
[0,1] = {−∞}∪[1, +∞].

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

4.8.2 Multi-Valued Expressions

The natural domain of an expression that is never single valued is the empty
set. As a simple example, the expression

f (x) = 1

x − x
(4.8.6)

is undefined for all values of x. Another example is:

f (x) = x

[−1, 1]
, (4.8.7)

the cset of which is [−∞, − |x|]∪[|x| , +∞] . In these cases there is no sin-
gle function, the closure of which is the cset of such an expression. For all
expressions to have csets, whether the expressions are single-valued func-
tions or multi-valued relations, additional analysis is required. In Walster,
Pryce, and Hansen (2002), the concept of constant variable expressions
(CVEs) is introduced. Briefly, 1

x−x
is a CVE that can be replaced by the

expression 1
y0

given that y0 = 0. Thus, the cset of 1
x−x

is unconditionally

equal to {−∞, +∞} . Note that CVEs are independent. This means that
each occurrence of the same CVE must be replaced by a different variable,
or by a zero-subscripted symbolic constant.

Defining the cset of x
[−1,1] can be accomplished using composite ex-

pressions and the union of all possible function closures in (4.8.8). This
same device can be used for CVEs and is described now.

Let a composite expression be given, such as

f (x | c) = g (h (x | c) , x | c) ,

in which the elements of the vector c are fixed constants. Further, as-
sume that Dg(y,x|c) �= ∅, but assume there are no values of x for which
the expression h (x | c) is a single-valued function. For example, with
f (x) = x

[−1,1] , let g (y, x) = x
y
, and h (x | [−1, 1]) = [−1, 1] . Therefore

the natural domain of h given c is the empty set. Additionally, Df (x|c) = ∅
because Dh(x|c) = ∅. Let H (x0, c) denote a set of values that depends
on the value x0 of x and the constant vector c. H (x0,c) might be simply

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

h (x0,c) , or it might be a set that is determined in some other way. The
important point is that H (x0 | c) need not be empty because it is the clo-
sure of a function h with an empty natural domain. In the present case
H (x0 | [−1, 1]) = [−1, 1] . When g’s domain is not empty, the only way
for f ’s domain to be empty is if h’s domain is empty. In this case, the cset
of f is simply:

cset (f, (x0 | c)) =
⋃

h0∈H(x0,c)

g (h0, x | c) (4.8.8)

where H (x0, c) = cset (h, (x0 | c)) . Combining this case with the usual
case in which Df (x|c) �= ∅ yields the four cases in (4.8.10) to be distin-
guished if

f (x | c) = g (h (x | c) , x | c) : (4.8.9)

if Df �= ∅ and

{
x0 ∈ Df

x0 /∈ Df

Case 1

Case 2

if Df = ∅ and

{
x0 ∈ Dh and Dg ∩ cset (h, (x0 | c)) �= ∅
x0 /∈ Dh or Dg ∩ cset (h, (x0 | c)) = ∅

Case 3

Case 4

(4.8.10)

Then, the cset of (4.8.9) can be written as follows:

cset (f, (x0 | c)) =






f (x0 | c) , if Case 1

f (x0 | c) , if Case 2
⋃

y0∈cset(h,(x0|c))
cset (g, (y0, x0 | c)) , if Case 3

∅, if Case 4
(4.8.11)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The cset of the example in (4.8.7) can be represented in a number of
equivalent ways:

cset (f (x0)) =
⋃

h0∈[−1,1]

x0

h0
(4.8.12a)

= x0

[−1, 1]
(4.8.12b)

= x0 × ([−∞, −1] ∪ [+1, +∞]) (4.8.12c)

= [−∞, − |x0|] ∪ [|x0| , +∞] . (4.8.12d)

To avoid a continuing plethora of zero subscripts, let it be understood
that given argument values of expression csets are always given points, even
though they are written without zero subscripts. Only where it is particu-
larly important to emphasize the distinction will cset (f, x) be written as
cset (f, x0) .

The following example uses simple special cases of (4.8.11) to illus-
trate the important distinction between constants and variables in defining
expression’s cset. The examples all use only scalar (not vector) functions
h, so f (x, y, z) = g (h (x, y) , z).

Example 4.8.5

The following cases (a through d) use variations on a common
theme: The expression

(
x

y

)

× (xy) (4.8.13a)

can be simplified to

x2 (4.8.13b)

because the two occurrences of the variables x and y in equa-
tion (4.8.13a) are dependent. However, the expression

(
x

[1, 2]

)

× (x × [1, 2]) (4.8.14a)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

can be simplified no more than to

x2 × [
1
2 , 2

]
(4.8.14b)

because the two occurrences of the interval [1, 2] in (4.8.14a)
are independent.

Let f (x, y, z) = g (h (x, y) , z) , with h (x, y) = x
y
, and

g (x, y) = xy, or equivalently, with h (x, y) = xy and

g (x, y) = x
y
. Therefore, f (x, y, z) =

(
x
y

)
z, or equivalently

(xz)

y
. The cset of f, depends on whether arguments are inde-

pendent constants or dependent variables (see Section 2.4.1),
together with whether any of the arguments of f repeat the
same variable. In the following examples, the zero subscript,
as in x0 is used to denote a constant.

(a) If g1 (x, y) = f (x, y, x) = x2

y
, not x×x

y
because multiple oc-

currences of x are dependent, then

cset (g1, (x, y)) = cset (f, (x, y, x)) (4.8.15a)

= x2

y
. (4.8.15b)

(b) If g2 (x, z) = f (x, x, z) = z, then

cset (g2, (x, z)) = cset (f, (x, x, z)) (4.8.16a)

= z. (4.8.16b)

(c) If h2 (z | x0) = g2 (x0, z) = f (x0, x0, z) , then the cset of
h2 (z | x0) depends on the value of the constant x0. In particular,

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

cset (h2, (z | x0))

= cset (g2, (x0, z)) (4.8.17a)

= cset (f, (x0, x0, z)) (4.8.17b)

=





z, if x0 ∈ R\ {0}
[0, +∞] for all z, if x0 ∈ {−∞, +∞}

[−∞, +∞] for all z, if x0 = 0
(4.8.17c)

Note the difference between the above results and

cset (g2, (x, z)) = cset (f, (x, x, z)) (4.8.18a)

= z, for all z. (4.8.18b)

(d) If h3 (x | y0) = g3 (x, y0) = f (x, y0, y0) , then the cset of
h3 (x | y0) depends on the value of the constant y0. in precisely
the same way that h2 (z | x0) depends on the value of the con-
stant x0.

Because variables can be dependent and constants cannot, variables and
constants must be carefully distinguished. For example, without additional
information it is impossible to tell: whether f (x, 0, 0) = x because y = 0
in f (x, y, y) ; or whether f (x, 0, 0) = [−∞, +∞] because both y = 0
and z = 0 in f (x, y, z) .

The above distinctions are important to make both in mathematical
notation and in computer languages that support intervals, such as Fortran
C, C++, or Java™. Otherwise, to guarantee containment, when there is any
expression ambiguity, the widest interval result must be returned.

The required distinctions can be made by introducing a computer lan-
guage variable dependence attribute: A computer variable or symbolic con-
stant can be explicitly declared to have either the mathematical dependence
or independence property. A computer variable or symbolic constant with
the dependence attribute has the properties of a mathematical variable —

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

namely dependence. A computer variable or symbolic constant with the
independence attribute has the mathematical properties of a constant —
namely, independence. Literal constants in computer languages represent
mathematical constants and are therefore unconditionally independent. In
mathematical notation, a zero subscript, as in x0, is used to identify a sym-
bolic constant as contrasted with a mathematical variable.

Henceforth, by letting the function h be a vector h, the cset of a com-
posite expression f is defined:

Definition 4.8.6 (Containment-set) When x, and y appear as expression
arguments in a cset expression, let it be understood that they denote spe-
cific values x0, and y0 of the corresponding vector variables. Given the
composition

f (x | c) = g (h (x | c) , x | c) , (4.8.19)

and the following case definitions

if Df �= ∅ and

{
x0 ∈ Df

x0 /∈ Df

Case 1

Case 2

if Df = ∅ and

{
x0 ∈ Dh and Dg ∩ cset (h, (x0 | c)) �= ∅
x0 /∈ Dh or Dg ∩ cset (h, (x0 | c)) = ∅

Case 3

Case 4

(4.8.20)

then the containment set of the composition in (4.8.19) is defined to be:

cset (f, (x | c)) =






f (x | c) , if Case 1

f (x | c) , if Case 2
⋃

y∈cset(h,(x|c))
cset (g, (y, x | c)) , if Case 3

∅, if Case 4
(4.8.21)

The following example demonstrates the use of vector functions h in
compositions and how different compositions can have different csets.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Example 4.8.7

Let f (x) = g (h (x)) with g (u, v) = u + v and

h (x)=(h1 (x) , h2 (x)
)

(4.8.22a)

=(log (x − 2) , log (−x − 2)
)
. (4.8.22b)

The cset of f is the empty set because the closure Dh of
h’s domain is empty. In fact, if the domains of h1 and h2 are
used to impose constraints on x, then x must be empty. Such
domain constraints can be used like any constraints to reduce
the set of possible solutions to a given problem. See Section
4.8.5; and Chapters 6, 11, and 16.

If f (x) is defined using

f (x) = log ((x − 2) (−x − 2)) (4.8.23)

instead of the composition in (4.8.22), f ’s cset is not empty
if x ∈ [−2, 2] . This is the domain constraint on x imposed
using this alternative definition. With the domain constraint
x ∈ [−2, 2] , the composition

f (x) = log ((2 − x) (x + 2)) (4.8.24)

= log (2 − x) + log (x + 2) (4.8.25)

can also be used.

If the expression f in Definition 4.8.6 is evaluated over some set X or
box xI of values, then as usual over the set X

cset (f, X | c) =
⋃

x∈X

cset (f, x | c) , (4.8.26a)

and over the box xI,

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

cset
(
f, xI | c

) =
⋃

x∈xI

cset (f, x | c) . (4.8.26b)

It does not matter whether the vector of constants c is a singleton set, a more
general set, or an interval vector. Note that as a consequence of (4.8.26a),

⋃

y∈cset(h,(x|c))
cset (g, (y, x | c)) (4.8.27)

in (4.8.21) can be written as

cset (g, (cset (h, (x | c)) , x | c)) . (4.8.28)

If it is understood that f (x | c) represents cset (f, (x | c)) , then (4.8.28)
can be simply represented as the right hand side of (4.8.19). In this way
the value of any expression can be replaced by its cset.

The simple example in (4.8.6) illustrates how the cset definition in
(4.8.21) provides a non-empty value for an expression whose cset is other-
wise empty. Let f (x) be the composite function g (h (x)) with g (y) = 1

y

and h (x) = x − x = 0. Therefore

f (x) = 1

x − x
. (4.8.29)

The domain of f is empty. Combining cset Definition 4.8.6 and the fact
that cset (h, x) = 0 for all x, it follows that cset (f, x) = cset (g, 0) =
{−∞, +∞} , the same result obtained above using CVEs.

4.8.3 Containment-Set Inclusion Isotonicity

Let X represent a vector of sets. The following lemma is used in the next
section to eliminate the inclusion isotonicity requirement in the original
fundamental theorem.

Lemma 4.8.8 Expression csets are inclusion isotonic. That is, given the
expression f and its cset evaluated over the sets X ⊆ X′, then

cset (f, X) ⊆ cset
(
f, X′) .

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Proof. From the hypothesis that X ⊆ X′, the set X′ can be partitioned
into two mutually exclusive and exhaustive sets:

X′ = X ∪ (
X′\X

)
. (4.8.30)

From the definition of the cset of f at a singleton set in (4.8.21) and over
a non-singleton set in (4.8.26),

cset
(
f, X′) = cset (f, X) ∪ cset

(
f,
(
X′\X

))
(4.8.31a)

⊇ cset (f, X) , (4.8.31b)

the required result.
Note that xI represents a vector of intervals and that f (x) and f

(
xI
)

can
continue to be placeholders for there respective csets. Note also that Lemma
4.8.8 holds if set vectors X and X′ are replaced by interval vectors xI and
xI′, respectively.

4.8.4 Fundamental Theorem of Interval Analysis

The original fundamental theorem of interval analysis (Theorem 3.2.2 due
to Moore) is remarkable. It guarantees that the values of a real function
over an interval argument can be rigorously bounded with a single interval
expression evaluation. No assumptions of monotonicity or continuity are
required.

The practical consequence of the original fundamental theorem is to
provide a simple method of constructing enclosures of real functions. While
the theorem is important, it can be made more general, even in the finite
interval system. With a closed interval system, such as that in Section 4.7,
the fundamental theorem can be extended to include composite expressions
that are undefined in the finite interval system. However, even the general
finite-system requires all sub-expressions to be inclusion isotonic. Theo-
rems 4.8.13 and 4.8.14, below, first proved in Walster (2000a) and Walster
and Hansen (1997), respectively, are the needed extensions of the original
fundamental theorem. In Walster, Pryce, and Hansen (2002), the equivalent
fundamental theorem for csets is also proved.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

First the original fundamental theorem is restated. Next the original
theorem is extended to the closed interval system and the restriction that
interval expressions be interval extensions is removed. At this point, the
theorem applies to inclusion isotonic cset enclosures of real functions in
the closed interval system. Finally, these results are further extended to
any composite function or multi-valued relation using the implicit notation
for csets and the fact that csets, themselves, are inclusion isotonic (Lemma
4.8.8).

Definition 4.8.9 Interval extension: An interval expression, F , evaluated
at the point x0 is an interval extension of the real function, f , evaluated at
the point, x0 if F (x0) = f (x0) for all x0 ∈ Df . See Section 3.2 or Moore
(1979), page 21.

Definition 4.8.10 Inclusion isotonicity: An interval expression, F , is in-
clusion isotonic if for every pair of interval boxes, xI

0 ⊆ xI′
0 ⊆ Df , then

F
(
xI

0
) ⊆ F

(
xI′

0

)
. See Chapter 3 or inclusion monotonicity in Moore

(1966).

Theorem 4.8.11 (The original Fundamental Theorem) Let F
(
xI
)

be an

inclusion isotonic interval extension of the real function f (x). Then F
(
xI

0
)

contains f (x0) for all x0 ∈ xI
0 ⊆ Df ; where Df is the domain of f.

Proof. See Theorem 3.2.2.
Because the four interval arithmetic operators are inclusion isotonic

interval extensions, interval arithmetic operations are enclosures of point
arithmetic operations. Repeated application of Theorem 4.8.11 yields en-
closures of rational functions. However, for Theorem 4.8.11 to hold, an
interval expression must be an interval extension (Definition 4.8.9) and
inclusion isotonic (Definition 4.8.10). As a consequence, four important
cases are not covered by the original fundamental theorem.

1. Theorem 4.8.11 cannot be used to prove an interval expression is
an interval enclosure of a function if the expression is not an inter-
val extension. For example, suppose an interval expression is the
interval evaluation of a real approximation g (x) of some function

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

f (x), to which is added an interval bound on the approximation er-
ror, ε [−1, 1] , for some ε > 0. Let the approximating expression
evaluated at the point x0 be F (x0) = gI (x0) + ε [−1, 1]. Because
F (x0) �= g (x0) , and F (x0) �= f (x0) , F (x0) is an interval exten-
sion neither of f nor of g. Therefore, in this case, Theorem 4.8.11
does not apply to the expression F (x0). (Also see the discussion of
bounding irrational functions in Section 3.7.)

2. Theorem 4.8.11 only applies to continuous functions. It cannot be
invoked to construct an enclosure of a function at either a singular
point or an indeterminate form, such as f (x, y) = x/y; either when
y = 0, or when both x = 0 and y = 0.

3. Theorem 4.8.11 does not define how to construct an enclosure when
an interval argument is partially or completely outside the domain
of a function. For example, suppose f (x) = ln (x). What is the
set of values that must be contained by an enclosure of f (x) over
the interval X = [−1, 1]? This question arises because ln (x) is not
defined for x < 0. This situation can arise not because of an analysis
mistake or coding error, but simply as the consequence of computed
interval widening because of dependence.

4. Theorem 4.8.11 does not define how to construct an enclosure of a
composition from enclosures of component expressions if the com-
ponent expressions are not inclusion isotonic. For example, given
enclosures of the subexpressions g (y, x) and h (x), what are suf-
ficient conditions under which G (H (x0) , x0) is an enclosure of
f (x0) = g (h (x0) , x0)?

Cases 1 through 3 are covered by simply replacing any of the given expres-
sion’s possible interval extensions (Definition 4.8.9) in Theorem 4.8.11 by
any of the given expression’s cset enclosures.

Definition 4.8.12 Containment-set enclosure: An interval expression, F ,
evaluated over an interval, xI

0, is a containment-set enclosure of the expres-

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

sion, f , if F
(
xI

0
) ⊇ cset

(
f, xI

0
)

for all xI
0 ∈ (

IR∗)n, where

IR∗ = {
[a, b] | a ∈ R∗, b ∈ R∗, a ≤ b

}
,

the set of extended real intervals.

In particular, an interval expression F , evaluated at the point x0, is
a cset enclosure of the real function f (x0) if F (x0) ⊇ cset (f, x0) for all
x0 ∈ (R∗)n . In the following theorem, this result replaces the unnecessarily
stringent requirement that an interval expression be an extension (Definition
4.8.9) of the given function.

Theorem 4.8.13 Let the function f have an inclusion isotonic cset enclo-
sure, F (x0) , of the expression f (x0). Then F

(
xI

0
)

is an enclosure of f ’s

cset for all xI
0 ∈ (

IR∗)n . That is,

F
(
xI

0
) ⊇ hull

(
cset

(
f, xI

0
))

. (4.8.32)

The proof parallels the proof of the original fundamental theorem.
Proof. Assume x0 ∈ xI

0. From the inclusion isotonicity hypothesis,
F
(
xI

0
)

contains F (x0), which in turn contains cset (f, x0) because F (x0)

is a cset enclosure of f . Since this is true for all x0 ∈ xI
0 ∈ (

IR∗)n, F
(
xI

0
)

contains the cset of f for all xI
0. Since xI

0 is an arbitrary member of
(
IR∗)n,

this completes the proof.
Theorem 4.8.13 guarantees that extended real interval arithmetic op-

erations contain the values produced by the corresponding point operation
over all elements of the extended interval operands. This is true even
for combinations of operations and operands for which the corresponding
point operation is undefined. The evaluation of any expressions that are
compositions of inclusion isotonic cset enclosures is an enclosure of the
corresponding composition. For example, the value of any rational func-
tion must be contained in the corresponding enclosure defined by a the same
set of extended interval operations.

While the consequences of the simple change from Theorem 4.8.11 to
4.8.13 cover cases 1 through 3 on page 74, neither theorem covers case

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

4 on page 75. Without an additional extension, it remains unclear how
to construct enclosures of composite expressions from sub-expression en-
closures that are not inclusion isotonic. Walster and Hansen (1998) cover
this case by extending the fundamental theorem to include compositions of
expressions that are not inclusion isotonic.

The implicit notation (using f
(
xI

0
)

in place of cset
(
f, xI

0
)
, and f I (x0)

in place of cset (f, x0)) for expression csets is now used for the remainder
of this book. Because it is understood that F

(
xI

0
)

is the result of evaluating

a cset enclosure of f at xI
0, it follows that hull

(
f
(
xI

0
)) ⊆ F

(
xI

0
)
.

Theorem 4.8.14 (Extended Fundamental Theorem) Given real expres-
sions, g(y, x) and h (x), the composite expression f (x) = g(h(x), x), and
cset enclosures, Y0 = H

(
xI

0
)

and G
(
Y0, xI

0
)
. Then G

(
Y0, xI

0
)

is a cset

enclosure of f
(
xI

0
)

for all xI
0 ∈ (

IR∗)n.

Proof. From the definition of csets and their inclusion isotonicity
(Lemma 4.8.8)

f (X0) ⊆ G
(
H
(
xI

0
)
, xI

0
)
. (4.8.33)

Because G
(
Y0, xI

0
)

and H
(
xI

0
)

are cset enclosures, h
(
xI

0
) ⊆ H

(
xI

0
) =

Y0 and over xI
0:

g
(
h
(
xI

0
)
, xI

0
) ⊆ G

(
hull

(
h
(
xI

0
))

, xI
0
)

(4.8.34a)

⊆ G
(
Y0, xI

0
)
. (4.8.34b)

Since xI
0 is an arbitrary member of

(
IR∗)n, this completes the proof.

The cset enclosures on which Theorem 4.8.14 depends can be created
from the definition of closures or by prior application of Theorem 4.8.14.
Inclusion isotonicity of g and h is not required.

4.8.5 Continuity

When using the closed interval system and continuity is required (as for
example is the interval version of Newton’s method), then there are three
options:

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

1. Introduce explicit constraints to eliminate points of discontinuity
from consideration;

2. Transform discontinuous expressions into continuous expressions,
see Walster (2003a); or

3. Use Theorem 4.8.15 below to select intervals that can be proved to
be continuous, or impose a containment constraint.

The alternative of using exceptions in the finite system to flag when
interval arguments are outside an intrinsic function’s natural domain is
problematic for at least two reasons:

1. Explicit code is required to prevent any function argument or oper-
ation operand from being outside the function or operator’s natural
domain.

2. Not all intrinsic functions will raise an exception at points of dis-
continuity, so this approach is not fail safe. The sign 8 and Heavi-
side9functions are good examples.

The following theorem provides a way to automate the test for continu-
ity over a given interval. This, combined with explicit domain constraints
can be used to create fail-safe (at least with respect to assumptions of exis-
tence and continuity) algorithms for finding roots and fixed points using the
interval version of Newton’s method and the Brouwer fixed-point theorem.
See Chapters 6, 11, and 16 for the algorithms needed to apply domain and
continuity constraints.

Theorem 4.8.15 Let f be a function of n variables x1, · · · , xn. Let xI be
an interval vector in the closure of f ’s domain. That is, xI ⊆ Df . Let

8The sign function is defined:

sign (x) =





−1 if x < 0
0 if x = 0

+1 if x > 0
(4.8.35)

9 The Heaviside function is defined:

hv (x) =
{

0 if x < 0
+1 if x ≥ 0

(4.8.36)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

g (x) =
(

∂f (x)

∂x1
, · · · ,

∂f (x)

∂xn

)T

denote the gradient of f evaluated at x. Then,

if all the elements of g
(
xI
)

are bounded (that is,
∣
∣gi

(
xI
)∣
∣ < +∞, for

i = (1, · · · , n)), then f is Lipschitz continuous (or L-continuous) over the
box, xI.

Proof. Begin with the open interval (a, b) and assume
∣
∣f ′ (x0)

∣
∣ < +∞

for all x0 ∈ (a, b) . This implies there is a positive finite constant C, say,
such that

lim
ε→0+

|f (x0) ± f (x0 ± ε)|
ε

≤ C,

or from the product of limits theorem,

lim
ε→0+

|f (x0) ± f (x0 ± ε)| ≤ C lim
ε→0+ ε

= 0,

which proves f is continuous in the open interval (a, b) .

At the endpoints of the closed interval [a, b] , even if they are on the
boundary of f ’s domain,

∣
∣f ′ (x0)

∣
∣ ≤ C guarantees continuity from within

the closed interval.
Finally, if f is a function of n variables, the above argument is applied

to each variable to obtain the required result.

4.9 VECTOR AND MATRIX NOTATION

Using cset enclosures, interval algorithms, including those in the remaining
chapters, can be implemented using any expression, whether a function or a
relation. With compiler support for interval data types and cset enclosures
of interval expressions, any interval algorithms can be implemented without
regard to the form of the expressions contained therein. Consequently, and
without loss of containment, any enclosure of a cset-equivalent expression
can be chosen by a compiler to produce narrow bounds on expression values.

The remaining chapters can be implemented using either the finite in-
terval system discussed in Chapters 2 and 3, or using any more general
cset-based interval system such as the one discussed in this chapter.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Unless explicitly stated otherwise, in the remainder of this and subse-
quent chapters upper case letters such as X without a superscript “I” denote
intervals, not sets.

In closed (cset-based) interval systems, f (x) represents the cset of an
extended real expression that might be multi-valued. On the other hand,
f I (x) , f (X) , and F (X) denote interval enclosures of the hull of f ’s cset.
The notation f I (x) is used to denote an interval bound on f ’s cset f (x)

at the point x. This notation serves to denote a (non-sharp) interval bound
on the cset of f (x) when f (x) is a single point. It is convenient to use
f (X) , f I (X) , and F (X) to represent interval bounds on the union of f ’s
csets over the interval X. When convenient to do so, f (X) can be used to
denote the hull of f ’s csets over the interval X. In other situations, f (X)

can be used to denote the infinite precision interval (not necessarily sharp
because of dependence) interval evaluation of the expression f over the
interval X. Finally, F (X) is normally used to represent the finite precision
interval evaluation of f over the interval X.

Table 4.5 contains these representations. The first and second rows
contain point and interval arguments, respectively. The first column is
labeled “Point Function Notation” rather than “Point Functions”, because
f (X) is used to denote an interval extension using the point function symbol
f. The second column contains interval functions.

Point Function Notation Interval Functions

Point
Argument

f (x) f I (x)

Interval
Argument

f (X) f I (X) F (X)

Table 4.5: Scalar Point and Interval Functions of One Variable

Note that even the above notation is not completely consistent. For
example, in some cases point functions of interval arguments are required.
Two such examples are the width w (X) and the midpoint m (X) of an
interval. Explicitly identified notation overloading can improve exposition

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

clarity, if done carefully and judiciously. Any residual ambiguity is resolved
with explicit qualifying remarks.

The notation shown in Table 4.6 is used to generalize point and interval
functions and expressions to include vector and matrix arguments and to
produce vector and matrix results. A balance has been struck between com-
pletely consistent, but verbose notation on the one hand, and inconsistent
notation that requires continuous restatement of context on the other hand.

A Bold upright font is used to denote vectors and matrices, with lower
and upper case used, respectively, for vectors and matrices. Point functions
of point arguments are shown in the upper-left cell of Table 4.6. The lower-
left and upper-right cells are used to denote vector and matrix analogs of
the corresponding cells in Table 4.5. In fact (with one exception) the (1, 1)-
elements in each cell of Table 4.6 contain the elements in Table 4.5. The
exception is in the lower-right cell in which there is no analogue in Table
4.6 of f I (X) in Table 4.5. The reason is that once fine distinctions have
been made for scalars, there is no need to notationally carry them over to
vector and matrix generalizations.

Point Function Notation Interval Functions

Point
Arguments

f (x) f (x) f (X)

f (x) f (x) f (X)

F (x) F (x) F (X)

f I (x) f I (x) f I (X)

f I (x) f I (x) f I (X)

FI (x) FI (x) FI (X)

Interval
Arguments

f (X) f
(
xI
)

f
(
XI
)

f (X) f
(
xI
)

f
(
XI
)

F (X) F
(
xI
)

F
(
XI
)

F (X) F
(
xI
)

F
(
XI
)

f I (X) f I
(
xI
)

f I
(
XI
)

FI (X) FI
(
xI
)

FI
(
XI
)

Table 4.6: Point and Interval Functions/Expression Notation

The above notation is not always followed. An example is N
(
x,xI

)

to denote the result of the n-dimensional Newton operation. It is both
traditional and appropriate to use upper case in tribute to Sir Isaac, rather
than to use the more consistent notation n

(
x,xI

)
.

It is unfortunate that interval notation cannot be as simple as in real
analysis. The need for extra notation illustrates the greater variety and

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

(greater) generality of information provided when computing with intervals.

4.10 CONCLUSION

With this chapter, the algorithms the remaining chapters can be imple-
mented using interval cset enclosures of any expression, whether a function
or a relation. With compiler support for interval data types and cset enclo-
sures of interval expressions, any interval algorithms can be implemented
without regard to the form of the expressions contained therein. Conse-
quently, and without loss of containment, any enclosure of a cset-equivalent
expression can be chosen to produce narrow bounds on expression values.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 5

LINEAR EQUATIONS

5.1 DEFINITIONS

An interval vector is a vector whose components are intervals. An interval
matrix AI is a matrix whose elements are intervals. Let x be a real vector
with components xi (i = 1, · · · , n), and let xI be an interval vector with
components Xi (i = 1, · · · , n). We say x is contained in xI (and write
x ∈ xI) if and only if xi ∈ Xi for all i = 1, · · · , n. Let A be a real matrix
with elements aij and let AI be an interval matrix with elements Aij for
i = 1, · · · , m and j = 1, · · · , n. We say A is contained in AI (and write
A ∈ AI) if and only if aij ∈ Aij for all i = 1, · · · , m and all j = 1, · · · , n.

Similarly, for interval vectors xI and yI we write xI ⊂ yI if and only if
Xi ⊂ Yi for all i = 1, · · · , n, where Y1, · · · , Yn are the components of yI.
Also, we write AI ⊂ BI if and only if Aij ⊂ Bij for all i = 1, · · · , m and all
j = 1, · · · , n where the Bij (i = 1, · · · , m; j = 1, · · · , n) are elements
of BI.

The set of real points (i.e., vectors) x in an interval vector xI form an
n-dimensional parallelepiped with sides parallel to the coordinate axes. We
often refer to an interval vector as a box.

We define the center of an interval vector xI to be the real vector m(xI) =
(m(X1), · · · , m(Xn))

T . Similarly, the center of an interval matrix AI is the
real matrix m(AI) whose elements are the midpoints of the corresponding

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

elements of AI. We define the width of an interval vector (matrix) to be the
width of the widest component (element).

An interval matrix AI is said to be regular if every real matrix A ∈ AI is
nonsingular. Otherwise, it is irregular. (Some authors use the term singular
in place of irregular.)

We use only one norm for interval vectors. It is the extension of the
max norm for real vectors and is defined by

||xI|| = max |Xi |

where the max is over i = 1, · · · , n. The magnitude of an interval is defined
in (3.1.1).

We say that an interval matrix AI is diagonally dominant if

mig(Aii) ≥
n∑

j=1
j �=i

|Aij | for (i = 1, · · · , n)

where the mignitude mig(·) is defined in (3.1.2).
We sometimes refer to an M-matrix. Let a square matrix A have non-

positive off-diagonal elements. If there exists a positive vector u such that
Au > 0, then A is an M-matrix.

Let a square matrix of order n have eigenvalues λi (i = 1, · · · , n). The
spectral radius ρ(A) is defined to be

ρ(A) = max |λi |

for i = 1, · · · , n.

5.2 INTRODUCTION

In this section, we introduce systems of interval linear equations and define
the solution set. In Section 5.3, we discuss the solution set and give an
illustrative example. We then consider interval methods for bounding the
(to be defined) hull of the solution set. We introduce an interval form of
Gaussian elimination in Section 5.4 and point out in Section 5.5 that it

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

cannot generally be used in a straightforward manner without considerable
overestimation of the solution set. In Section 5.6, we show how to reduce
the overestimation by use of preconditioning. We describe an interval
version of the Gauss-Seidel method in Section 5.7. In Section 5.8, we
describe a procedure for determining the exact hull of the solution set of a
preconditioned system. Section 5.10 describes a way to compute the hull of
a solution set without preconditioning. In Section 5.11, we consider use of
an alternative to the inverse of a matrix when the matrix is singular. Section
5.12 discusses overdetermined systems.

Consider the real system of equations

Ax = b. (5.2.1)

There are many applications in which the elements of the matrix A and/or
the components of the vector b are not precisely known. If we know an
interval matrix AI bounding A and an interval vector bI bounding b, we can
replace (5.2.1) by

AIx = bI. (5.2.2)

We define the solution to (5.2.2) to be the set

s = {x : Ax = b, A ∈ AI, b ∈ bI}. (5.2.3)

That is, s is the set of all solutions of (5.2.1) for all A ∈ AI and all b ∈ bI.
This set is generally not an interval vector. In fact, it is usually difficult
to describe s, as we show by example in Section 5.3. In Section 17.1, we
describe a method for approximating s as closely as desired by covering it
with boxes of arbitrarily small size. Other sections in Chapter 17 provide
a means for bounding the hull (defined below) of the solution set. See
especially Section 17.10.

Because s is generally so complicated in shape, it is usually impractical
to try to use it. Instead, it is common practice to seek the interval vector
xI containing s that has the narrowest possible interval components. This
interval vector is called the hull of the solution set or simply the hull. We
say we “solve” the system when we find the hull xI.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The problem of finding the hull is known to be NP -hard. See, for
example, Heindl et al (1998). Therefore, we generally compute only outer
bounds for the hull. Various iterative and direct methods for computing
such bounds have been published. We discuss some of these methods later
in this chapter. Many publications have discussed this topic. For example,
see Alefeld and Herzberger (1983), Hansen (2000a, b), Kearfott (1996),
Neumaier (1986, 1990), Shary (1995, 1999). There is a case in which the
exact hull is easy to compute. This is the case in which the system has been
preconditioned. See Section 5.8.

It is difficult to write (5.2.2) in an unambiguous way. Consider the
scalar case AI = [1, 2] and bI = [4, 5]. The solution set is the interval

xI = [4, 5]
[1, 2] = [2, 5].

But, the product of AI times xI is [2, 10], which does not equal bI. That is,
we cannot substitute the solution into the given equation and get equality.
All we can say is that AIxI ⊃ bI.

To understand what happens in this example, note that xI = bI

AI and

hence AIxI = AI
(

bI

AI

)
. This formulation shows that AI occurs twice in the

computation of AIxI. Therefore, dependence (as discussed in Section 2.4)
causes loss of sharpness in the computed result.

In this scalar example, it is possible to compute AI
(

bI

AI

)
correctly to

be bI using dependent multiplication described in Section 2.4.1. However,
when AI is a matrix, this does not seem to be possible.

We continue to write an equation in the form (5.2.2) wherein x occurs
as if it were a real vector. The obvious incongruity emphasizes the fact that
the “equation” requires interpretation.

5.3 THE SOLUTION SET

To illustrate that the solution set s given by (5.2.2) is not simple, we now
give an example from Hansen (1969b). See also Deif (1986). Consider the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

equations

[2, 3]x1 + [0, 1]x2 = [0, 120], (5.3.1a)

[1, 2]x1 + [2, 3]x2 = [60, 240]. (5.3.1b)

When x is in the first quadrant, we have x1 ≥ 0 and x2 ≥ 0 and hence
(5.3.1) can be written

[2x1, 3x1 + x2] = [0, 120],
[x1 + 2x2, 2x1 + 3x2] = [60, 240].

If x is to be a point of the solution set s, it must be such that the left member
intersects the right member in each equation. Therefore,

2x1 ≤ 120, 3x1 + x2 ≥ 0 (5.3.2a)

x1 + 2x2 ≤ 240, 2x1 + 3x2 ≥ 60. (5.3.2b)

The relation 3x1+x2 ≥ 0 is automatically satisfied because we are consider-
ing points in the first quadrant only. The remaining three inequalities, when
rewritten as equalities, provide boundary lines for s in the first quadrant.

The boundary of s in the other quadrants can be found in a similar way.
The result is shown in Figure 5.3.1. The boundary is composed of eight
line segments. In higher dimensions, s can be quite complicated. For an
explicit description, see Hartfiel (1980).

The set s has been discussed in contexts wherein interval analysis is not
used. For example, see Oettli (1965), Oettli Prager and Wilkinson (1965),
and Rigal and Gaches (1967).

We consider interval methods for bounding s in Sections 5.4, 5.7, 5.8,
and 5.10. The bounds are in the form of a box (i.e., an interval vector)
containing s. The smallest such box (the hull) for the solution set of (5.3.1)
is

xI =
[[−120, 90]

[−60, 240]
]

.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

-100 200

x1

-100

300
x2

Figure 5.3.1: Solution Set S for Equations in (5.3.1)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Note that xI contains points that are not in s. For example, the point (0, 200)T

is in xI but not in s.
The method we have described can determine the solution set in a

given orthant. To completely determine the solution set in this way for an
n-dimensional problem requires finding the solution set in 2n orthants. This
suggests that it is difficult to determine the solution set. It is shown in
Heindl et al (1998) that even the simpler problem of computing the hull of
the solution set is NP -hard.

5.4 GAUSSIAN ELIMINATION

There are several variants of methods for solving linear equations that can
be labeled as Gaussian elimination. See the outstanding book by Wilkinson
(1965). An interval version of any of them can be obtained from one using
ordinary real arithmetic by simply replacing each real arithmetic step by
the corresponding interval arithmetic step.

One standard method involves factoring the coefficient matrix into the
product of a lower and an upper triangular matrix. An interval version of
this method with iterative improvement of the triangular factors is discussed
byAlefeld and Rokne (1984). Most papers on interval linear equations have
not used factorization and we do not do so.

If the coefficient matrix AI and the vector bI are real (i.e., noninterval),
then the interval version of Gaussian elimination applied to Ax = b simply
bounds rounding errors. If the coefficient matrix AI and/or the vector bI

have any interval elements, the interval solution vector computed using
Gaussian elimination contains the set s.

Suppose the elimination procedure does not fail because of division by
an interval containing zero. Then it produces an upper triangular matrix.
If no diagonal element of the upper triangular matrix contains zero, then
AI is regular (i.e., each real matrix contained in AI is nonsingular). If AI

is degenerate, this result proves that AI is nonsingular. That is, the interval
method can prove that a real matrix is nonsingular.

Note that regularity can be proved even when (outwardly) rounded
interval arithmetic is used because the rounding merely widens intervals.
If the widened diagonal elements of the transformed (by elimination) matrix

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

do not contain zero, then they do not contain zero if exact interval arithmetic
is used. Therefore, even when rounding occurs, we can numerically prove
that a given real matrix is nonsingular or that every real matrix in an interval
matrix is nonsingular.

If AI and/or bI has at least one nondegenerate interval element, then
the solution set s generally consists of more than one point. The box xI

computed by interval Gaussian elimination always contains the solution
set s. However, it is generally not the smallest possible box (the hull)
containing s. This is partly because of rounding errors and partly because
of dependence.

The following argument shows that the solution xI computed using in-
terval Gaussian elimination contains s. When we do Gaussian elimination,
using real arithmetic, we compute each component of the solution by, in
effect, evaluating a real rational function of the elements of A and b.

By replacing these quantities by intervals and doing the operations using
interval arithmetic, we replace this real rational function by an inclusion
isotonic interval extension of the rational function. By Theorem 3.2.2,
each such component of the interval solution contains the corresponding
real component of the real solution for any A ∈ AI and any b ∈ bI. Since
these real components constitute a point in s, the interval solution must
contain s.

Unfortunately, simply replacing real Gaussian elimination by an inter-
val version generally does not yield a suitable algorithm. Bounds of inter-
mediate quantities tend to grow rapidly because of accumulated rounding
errors and especially because of dependence among generated intervals.
Thus, the computed solution is far from sharp, in general.

An alternative algorithm is described in Section 5.6. It is more costly
in numerical operations than simple Gaussian elimination, but produces
excellent results when the given system’s elements are degenerate or nearly
so.

Special consideration must be given to pivot selection in interval Gaus-
sian elimination. In the real algorithm, if two elements are candidates for
a pivot, the better choice is the one of larger magnitude. However, if two
intervals overlap, then all the real numbers in one are not larger than all the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

real numbers in the other. A good choice is the one of largest mignitude.
See 3.1.2.

Wongwises (1975a, 1975b) simply selects the candidate of largest mag-
nitude (see the definition in Section 3.1) as the pivot. Hebgen (1974) dis-
cusses a scaling invariant pivot search procedure.

5.5 FAILURE OF GAUSSIAN ELIMINATION

Since (outward) rounding occurs in interval computations, a solution com-
puted using interval Gaussian elimination is generally not as narrow as
possible. In fact, one might expect that the algorithm occasionally fails
because of division by an interval containing zero even when the solution
set s is bounded.

What is worse, however, is that dependence can cause such failure even
when exact interval arithmetic is used. In such cases a long accumulator is
obviously no help.

In practice, failure can occur even when each real matrix in the in-
terval coefficient matrix is positive definite. This is proved using a three
dimensional example by Reichmann (1979).

Consider a system Ax = b in which A and b are real (i.e., noninterval).
Suppose we solve this system by interval Gaussian elimination simply to
bound rounding errors. Hansen and Smith (1967) observed that the interval
bounds grow as the order of the matrix grows.

They experimented with the method on a computer with 27 bits in the
mantissa (which is the equivalent of about 8.5 decimal digits of accuracy).
they found that for well conditioned real matrices, the endpoints of the
interval components of the solution vector generally differed in the first
digit for matrices of order 10 or more. Thus when using single precision
interval arithmetic, simple interval Gaussian elimination cannot generally
be used to solve systems of order 10 or more.

Wongwises (1975a, 1975b) conducted much more extensive experi-
ments. Her results are a definitive determination of the properties of the
interval Gaussian elimination algorithm.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

5.6 PRECONDITIONING

Simply replacing a real Gaussian elimination algorithm by an interval ver-
sion cannot generally be recommended in practice (although there are ex-
ceptions). In this section, we give an alternative algorithm. It gives excel-
lent results when applied to degenerate or near degenerate systems.

The method was derived by Hansen (1965). A thorough study of the
method was made by Wongwises (1975a, 1975b). She showed that, for a
noninterval system the guaranteed accuracy of the interval result (as speci-
fied by the interval solution) is comparable with the (unknown in practice)
accuracy of the result computed using a real Gaussian algorithm.

The procedure we now describe is the same whether the system is real
or interval. However, we describe and discuss the interval version.

Let Ac denote the center m(AI) of AI. Thus, if Aij = [Aij , Aij], then

Ac
ij = 1

2

(
Aij + Aij

)
. In practice, Ac need not be exact. By some means (for

example, real Gaussian elimination), we compute an approximate inverse
B of Ac. We use B as a preconditioning matrix. Using interval arithmetic
to bound rounding errors, we compute MI = BAI and rI = BbI. We then
solve the preconditioned system

MIx = rI. (5.6.1)

It might happen that BI cannot be computed because Ac is singular
or near singular. In such a case, the solution set of AIx = bI might be
unbounded. Thus, it is reasonable simply to abandon trying to compute a
solution. A program for this case might return a message such as “Solution
might be unbounded”. We describe an alternative procedure in Section
5.11.

When exact arithmetic is used, the center of MI is the identity matrix. If
the interval elements of AI are not wide, then MI approximates the identity
matrix in some sense. In this case, we can solve (5.6.1) using rounded in-
terval arithmetic with little growth of interval widths. This is the motivation
for the procedure just described.

Computing MI is done without any loss of sharpness due to dependence.
This is because each element of AI enters only once in computing a given

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

element of MI. Thus, only rounding errors add width to the computed
elements of MI.

We can now solve (5.6.1) by the interval Gaussian elimination method
described above. If the interval elements of AI are narrow, then so are those
of MI. Therefore, a component of Xi (i = 1, · · · , n) differs little from Ri

Mii
.

Dependence arising from the small off-diagonal elements of MI has little
effect.

When the elements of AI are real (i.e., degenerate intervals), computed
results using this procedure are excellent. There is little growth of inter-
vals from either rounding errors or dependence. For experimental results
verifying this fact, see Wongwises (1975a, 1975b).

To use the method we have described for solving systems of linear
equations, we do a considerable amount of work that is not needed in
noninterval Gaussian elimination when we merely compute an approximate
solution. The extra work consists of computing an approximate inverse B
of the center Ac of AI and multiplying AI and bI by B. Consequently, our
procedure uses about six times as many operations as ordinary Gaussian
elimination.

Extra work of this sort seems to be unnecessary for other kinds of
interval computations. It is unfortunate that the one place where it seems
to be necessary is in such a fundamental problem.

The extra work can pay a dividend other than producing good results
in interval Gaussian elimination. The approximate inverse B of Ac is a
valuable commodity in certain applications. In Section 11.4, we describe
how we use it when solving systems of nonlinear equations. In Section
12.6, we discuss its use in our global optimization algorithm.

Suppose the coefficient matrix AI is not degenerate. Then the solution
set is not a single point (in a multidimensional space) but is a set of points.
See Section 5.3. Another unfortunate aspect of preconditioning is that
it generally enlarges this solution set. See Hansen (1992) or Neumaier
(1990). However, this enlargement is generally much less than that caused
by the growth of error bounds due to dependence. The solution set of
the preconditioned system contains the solution set of the original system
AIxI = bI.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

There are methods that avoid preconditioning when bounding the solu-
tion set. See, for example, Shary (1995).

It is not always necessary to precondition a system of linear equations. If
the coefficient matrix AI is an M-matrix, then interval Gaussian elimination
produces the smallest box containing the solution set (i.e., the hull). See
Neumaier (1990). In this case, preconditioning not only is unnecessary, but
should be avoided to not enlarge the solution set.

Preconditioning can be done in ways other than that we have discussed.
See Kearfott (1996).

Suppose that at least one of the elements of AI is a nondegenerate inter-
val. Then the solution of AIx = bI is not a single point but is an extended
set. See Section 5.3. The solution of the preconditioned system (5.6.1)
contains the solution set of AIx = bI; but is generally larger. The inner
region of Figure 5.6.1 is the solution set of the original system (5.3.1). The
outer region is the solution set of this system after it has been precondi-
tioned. Despite this enlargement of the solution set, it is generally advisable
to precondition the system before solving.

The method we have described in this section is suitable when the
elements of AI are degenerate or narrow intervals. However, when the ele-
ments of AI are wide intervals, dependence generally causes interval widths
to grow rapidly when applying Gaussian elimination to the preconditioned
system (5.6.1). In this wide interval case, it is better to use the hull method
described in Section 5.8. The hull method uses preconditioning, but can
fail. It is generally advisable to precondition.

When the interval elements of AI are wide, Gaussian elimination is
prone to failure whether preconditioning is used or not. Failure occurs when
it is necessary to divide by an interval containing zero in the elimination
procedure. A virtue of the interval Gauss-Seidel method in the next section
is that it is always applicable.

In Section 5.8, we discuss yet another method which we call the hull
method. The hull method computes the exact hull of the preconditioned
system. However, it requires some extra computing. It is reasonable to
always use the hull method to solve the preconditioned system; and we
recommend its use. However, some computing effort can be saved by

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

-100 200

x1

-100

300
x2

Figure 5.6.1: Solution Set S and the enlarged solution set due to precondi-
tioning for Equations in (5.3.1)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

solving the preconditioned system using Gaussian elimination as described
above. The hull method generally provides sharper results.

5.7 THE GAUSS-SEIDEL METHOD

In some applications, we have crude bounds on the solution xI of AIx = bI.

For example, this is the case when solving the linearized equations in the
interval Newton method to be described in Chapter 11. When such bounds
are known, it is possible to solve the preconditioned system MIx = rI by
alternative procedures.

An interval version of the Gauss-Seidel method was first discussed
by Alefeld and Herzberger (1970). See also Ris (1972) and Alefeld and
Herzberger (1974, 1983). In this section, we describe an extension of the
interval Gauss-Seidel method due to Hansen and Sengupta (1981). We
assume that the method is applied to the preconditioned system MIx = rI.

Preconditioning enhances performance by reducing the spectral radius of
the coefficient matrix. See below.

The i-th equation of the system MIx = rI is

Mi1x1 + · · · + Minxn = Ri.

Assume we have interval bounds Xj on the variables xj for all j = 1, · · · , n.
Solving for xi and replacing the other components of x by their bounds, we
obtain the new bound

Yi = 1

Mii

(Ri − Mi1X
′
1 − · · · − Mi,i−1X

′
i−1 − Mi,i+1Xi+1 − · · · − MinXn).

(5.7.1)

The intersection

X′
i = Xi ∩ Yi (5.7.2)

now replaces Xi .

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We successively solve using (5.7.1) and (5.7.2) with i = 1, · · · , n. The
intersecting process given by (5.7.2) is done at each step so that the newest
bound is used in (5.7.1) for each variable xj for j < i.

Note that Mii (i = 1, · · · , n) might contain zero. If so, the division
in (5.7.1) yields a result for Yi which is not finite. Suppose the numerator
also contains zero. Then, if we compute Yi , the result is [−∞, +∞], and
Xi ∩ Yi is just Xi ; and we have made no progress. Hence, if zero is in both
the numerator and denominator in (5.7.1), we do not try to compute Yi from
(5.7.1). We simply skip to the next value of i.

Now suppose 0 ∈ Mii but zero is not in the numerator interval of (5.7.1).
Then Yi is composed of two semi-infinite intervals. Thus, Xi ∩Yi can be one
(finite) interval, the union of two (finite) intervals, or empty. The arithmetic
for the case when 0 ∈ Mii is given in Chapter 4.

If Xi ∩ Yi is empty, we have proof that equation (5.6.1) does not have
a solution in xI. Therefore the original equation AIx = bI does not have a
solution in xI. For the remainder of this section, we assume that Xi ∩ Yi is
not empty.

Suppose X′
i (computed from (5.7.2) is composed of two intervals. Then

X′
i is just the original interval with a gap missing. Since it is tedious to work

with an interval with a gap missing, we simply (temporarily) ignore the gap
and use the original interval Xi instead of X′

i when using (5.7.1) for the
next value of i. The gap might be used later if the box is split in its i-th
component.

Suppose we have solved for X′
i for all i = 1, · · · , n. In the inter-

val Newton method discussed in Chapter 11, we might decide to split the
new box in one or more dimensions. We can delete gaps in the process.
Therefore, we save information of where gaps occur.

Although (5.7.1) and (5.7.2) are written with i in the natural order
1, · · · , n, we do not use their elements in this order. If 0 /∈ Mii , then X′

i

(from (5.7.2)) might be strictly contained in Xi . If so, sharper results are
computed from (5.7.1) for subsequent values of i.

Hence, we first solve for Yi (and X′
i) for those values of i for which

0 /∈ Mii . Then we solve using the remaining values of i. It might be that,
for a subsequent value of i, the numerator does not contain zero, whereas
it does when using the natural ordering i = 1, · · · , n.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The Hansen-Sengupta method differs from the basic Gauss-Seidel
method in that:

(a) preconditioning is used,

(b) division by an interval containing zero is allowed,

(c) gaps in intervals (i.e., exterior intervals) are used,

(d) the order in which equations are solved is variable, and

(e) the intersection (5.7.1) is determined before Yi+1 is computed.

Hereafter, when we refer to the interval Gauss-Seidel method, we shall
mean the Hansen-Sengupta version. However, we shall retain the more
familiar Gauss-Seidel name.

If the off-diagonal elements of MI are “wide” intervals, a single iteration
of the Gauss-Seidel method improves the bounds on the solution by little
or not at all. If the off-diagonal elements are “narrow” intervals, one step
of the Gauss-Seidel can give nearly sharp results. In either case, the Gauss-
Seidel step, with fewer operations than elimination, can be the preferred
procedure. This cheaper procedure was introduced into interval Newton
methods by Hansen and Sengupta (1981).

More than one Gauss-Seidel step can be used, of course. In fact, one
can iterate until no further improvement occurs. Termination occurs in a
finite number of steps. However, this is not an efficient use of the method.

It is fruitful to solve the equations in different orders for different steps
of the Gauss-Seidel method. See, for example, Alefeld (1977).

Let λi (i = 1, · · · , n) denote the eigenvalues of a real matrix M of
order n. The spectral radius of M is defined by ρ(M) = max |λi | where the
maximum is over i = 1, · · · , n. The spectral radius of an interval matrix
MI is ρ(MI) = max ρ(M) where the max is over all M ∈ MI.

The iterated Gauss-Seidel method in interval form converges if
ρ(|MI|) < 1, where |MI| denotes the matrix whose elements are the mag-
nitudes of the corresponding elements of MI. See Alefeld and Herzberger
(1974, 1983).

If the original vector xI used in (5.7.1) contains a solution of MIx = rI,
then the new vector computed using (5.7.1) also contains the solution. If the
intersection X′

i ∩ Xi is empty for any i = 1, · · · , n, then this fact provides

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

proof that the original vector xI did not contain a solution. Note that this is
true even when (outward) rounding occurs.

We discuss a modified version of the Gauss-Seidel method in Section
5.10.

5.8 THE HULL METHOD

The hull of the solution set of a system of interval linear equations is defined
to be the smallest box containing the solution set of the system. For brevity,
we speak of the “hull of a system”. In general, finding the hull of a system
is NP -hard. See Heindl et al (1998).

Suppose a given interval system AIx = bI has been preconditioned
using the inverse of the center of AI as described in Section 5.6. If the
preconditioned system MIx = rI is regular, its hull can be determined
exactly by a fairly simple procedure. In this section, we describe how this
is done. We refer to the procedure as the hull method.

A procedure for computing this hull was given by Hansen (1992) and
independently by Bliek (1992). An improved version was given by Rohn
(1993). The procedure we describe in this section is a further improved
version from Hansen (2000a). See also Neumaier (1999, 2000). Ning and
Kearfott (1997) gave a method for bounding the hull when the coefficient
matrix is an H-matrix. Their bounds are sharp when the center of the
H-matrix is diagonal. We do not discuss H-matrices in this book. For a
definition and discussion of H-matrices, see Neumaier (1990).

We give a procedure for computing the hull; but do not derive it. For
a derivation, see Hansen (2000). We first give a theoretical algorithm and
then a practical one.

5.8.1 Theoretical Algorithm

In Section 5.6, we denoted the center of AI by Ac and used a matrix B,
which approximates (Ac)−1 , to precondition the system AIx = bI. We
can write AI = Ac + Q[−1, 1] where Q is a real matrix. Therefore, the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

preconditioned matrix (see (5.6.1)) is

MI = BAI = I + BQ[−1, 1].
That is, the center of MI is the identity matrix if B is the exact inverse of
Ac.

Denote MI = [MI, MI] and rI = [rI, rI]. Then for i, j = 1, · · · , n,

MI
ij = −MI

ij (i �= j), (5.8.1a)

MI
ii + MI

ii = 2. (5.8.1b)

Below we give a method for testing whether MI is regular. See Theorem
5.8.1. For now assume it is. In this case, MI is nonsingular and we define

P = MI−1.
We modify the system MIx = rI so that rI takes a particular form.

Suppose we multiply the i-th equation of the system by −1 and simultane-
ously change the sign of xi . From (5.8.1a), the off-diagonal elements are
unchanged. The diagonal elements change sign twice so they have no net
change. Thus, the coefficient matrix is unchanged while xi and Ri change
sign.

We can assure that Ri ≥ 0 by changing the sign of Ri (and xi) if
necessary. Assume this is the case. If 0 ∈ Ri , we can change the sign of
Ri (and xi) if necessary and obtain −Ri ≤ Ri . Therefore, we can always
assure that

0 ≤ |Ri | ≤ Ri. (5.8.2)

Hereafter, we assume that (5.8.2) is satisfied for all i = 1, · · · , n. This
simplifies the procedure for finding the hull of MIx = rI.

Define Ci = 1
2Pii−1 and Zi = (Ri +Ri)Pii − eT

i PrI where ei is the i-th

column of the identity matrix. Denote the hull by hI. Then

Hi =
{

CiZi if Zi > 0,
Zi if Zi ≤ 0

(i = 1, · · · , n) (5.8.3a)

hI = PrI (5.8.3b)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

To obtain this result, we assume that the center of MI is exactly the
identity matrix. In practice, it is not because of rounding errors made in
computing MI as the product BAI and because B is only an approximate
inverse of the approximate center of AI. We now describe a practical pro-
cedure that takes these inaccuracies into account.

5.8.2 Practical Procedure

Denote the computed approximation for MI by (MI)′ = [MI′, MI
′]. We

widen the elements of (MI)′ just enough so that the resulting matrix has
center I. We change no more than one endpoint of each element.

If MI′
ij ≤ −|MI

′
ij | for j �= i, we leave MI′

ij unchanged. Otherwise, we

replace MI′
ij by −|MI

′
ij |. This requires no arithmetic. To change an end-

point of a diagonal element requires arithmetic; so rounding might occur.
We change MI′

ii (if necessary) so that for the modified matrix MI, we have

MI
ii ≤ 2 − MI

ii . To do so, we compute 2 − MI
′
ii using interval arithmetic.

We then set MI
ii equal to the smaller of MI′

ii and the lower endpoint of the

computed interval bound for 2 − MI
′
ii .

Note that it is not necessary to explicitly modify an upper endpoint of
(MI)′. This is because only the lower endpoints of elements of MI are used
in computing the hull. The modified matrix (implicitly) has the identity as
its center.

Our procedure for finding the hull is valid only if MI is regular. The
following theorem from Hansen (2000) enables us to verify regularity as a
by-product of the computation of the hull.

Theorem 5.8.1 Assume MI is nonsingular so that P = MI−1 exists. Also
assume that MI

ii > 0 for all i = 1, · · · , n. Then MI is regular if and only
if P ≥ I.

Let B0 denote the exact inverse of the exact center of A. Recall that
instead of B0, we compute an approximation B for B0 and therefore we
must widen the approximate matrix MI′ to obtain a matrix MI whose center
is the identity matrix. Suppose that, using this theorem, we verify that the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

computed matrix MI is regular. Then we have proved that both A and the
result B0A of exact preconditioning are regular. However, the converse is
not true. If MI is irregular, both A and B0A can be regular. Also, since
preconditioning enlarges the solution set of a system of equations, B0A can
be irregular when A is regular.

If, using this theorem, we find that MI is regular, we can compute the
hull using (5.8.3). We have noted, however, that the hull of the precondi-
tioned system MIx = rI is generally larger than that of the original system
AIx = bI. We have also noted that if AI is an M-matrix, then Gaussian
elimination applied to AIx = bI yields its hull. Therefore, if AI is an M-
matrix, Gaussian elimination without preconditioning is preferred to the
hull method. This not only avoids the work of preconditioning, but Gaus-
sian elimination requires less computing than the hull method.

5.9 COMBINING GAUSS-SEIDEL AND HULL METHODS

Both the Gauss-Seidel method of Section 5.7 and the hull method of Section
5.8 begin by preconditioning a given system. In the resulting system

MIx = rI, (5.9.1)

the center of MI is the identity matrix. If MI
ii ≤ 0 for some i = 1, · · · , n,

then MI is irregular. In this case, the hull method is not applicable. However,
it can be combined with the Gauss-Seidel method as we describe in this
section.

Assume that MI
ii > 0 for one or more values of i = 1, · · · , n. For

simplicity, assume that MI
ii > 0 for i = 1, · · · , s and MI

ii ≤ 0 for
i = s + 1, · · · , n for some s where 1 ≤ s < n. We temporarily ignore the
last n − s equations. We write the first (i = 1, · · · , s) equations as

MI
i1x1 + · · · + MI

isxs = rI
i − MI

i,s+1xs+1 − · · · − MI
inxn (5.9.2)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

When applying the Gauss-Seidel method, we assume that we have
bounds on the components of x. In the right member of (5.9.2), we re-
place xs+1 through xn by their interval bounds. We then have s equations
in s unknowns in which the center of the coefficient matrix is the identity
matrix of order s. We can use the hull method of Section 5.8 to solve this
new system. This can fail if the new coefficient matrix is irregular. In this
case, we can use the Gauss-Seidel method in the form described in Section
5.8.

If the new coefficient matrix is regular, the hull method obtains a sharp
solution of equations (5.9.2) for the first s components of the solution vector
of (5.9.1). Solving (5.9.2) by the Gauss-Seidel method does not produce a
sharp solution.

On the other hand, the Gauss-Seidel method has the following virtue.
Suppose we apply it to (5.9.1) rather than (5.9.2). It is possible that a
sharpened bound on one component will sharpen another component that
is obtained when solving a different equation of the system. This can occur
because of the use of the intersection step expressed by equation (5.7.2)
(which is a feature of the Hansen-Sengupta version of Gauss-Seidel). Such
a sharpening does not occur when solving (5.9.2) by the hull method.

Note that such sharpening occurs only for those components for which
the solution (before intersection) is the entire real line with a gap missing.
If the intersection with the input interval is the union of two finite inter-
vals, then no sharpening of the component occurs during the Gauss-Seidel
procedure. Therefore, we can expect that the method of this section will
produce sharper bounds on the solution of (5.9.1) than will Gauss-Seidel.
A reasonable procedure is to use both methods and take the intersection of
the two results.

Note that once new bounds on x1, · · · , xs have been obtained, we can
obtain new bounds on the remaining components of x using the Gauss-
Seidel method as described in Section 5.7.

5.10 THE HULL OF THE SOLUTION SET OF AIx = bI

We have noted that the problem of determining the hull of the solution set of
an arbitrary (non-degenerate) linear system is NP -hard. Nevertheless, the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

hull of the solution set of general systems of small order can be computed.
We now describe how this can be done.

Given an interval system AIx = bI, suppose we define a real system
by choosing one endpoint of each element of AI and one endpoint of each
component of bI. Suppose we do this for every possible combination of
endpoints and solve each resulting real systems.

Nickel (1977) showed that the smallest value of a component xi of
x among all the solutions is the lower endpoint of the i-th component of
the hull and the largest such value is the upper endpoint. Therefore, we
can determine the hull by solving 2n(n+1) real systems. The number of
real systems to be solved can sometimes be greatly reduced. See Hansen
(2002b).

5.11 A SPECIAL PRECONDITIONING MATRIX

In various sections, we have discussed the inverse B of the center Ac of an
interval matrix AI. We have usually ignored the fact that B does not exist if
Ac is singular. Suppose, we try to invert Ac using Gaussian elimination. If
Ac is singular, this fails because a pivot element is zero.

If our final goal is simply to compute a solution to the linear system,
we can stop. However, in later sections of this book, our goal is to find
the intersection of the (unbounded) solution of the system with a given
box. Therefore we wish to continue. We can use a Gauss-Seidel step to
compute a bound on this intersection. To do so, we want an alternative
preconditioning procedure.

When we are going to use Gauss-Seidel, we can regard preconditioning
as an effort to compute a matrix that is diagonally dominant. Even when Ac

is singular, we can generally compute a matrix B such that some diagonal
elements dominate the off-diagonal elements in their row. This improves
the performance of Gauss-Seidel.

To compute B when Ac is singular, we can begin the Gaussian elim-
ination procedure. Assume we use a Gauss-Jordan form of elimination
in which a pivot element is used to zero elements both above and below
the diagonal. Suppose we arrive at a stage where a nonzero pivot element
cannot be obtained using row and column pivoting. The (incomplete) elim-

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

ination steps at this stage serve to determine a preconditioning matrix that
can improve the performance of Gauss-Seidel.

5.12 OVERDETERMINED SYSTEMS

In Hansen and Walster (2003) an algorithm is developed to compute interval
bounds on solutions to overdetermined system of interval linear equations.
This procedure and extensions of it can be used when more interval equa-
tions than unknowns are given. Overdetermined systems are better con-
ditioned than the corresponding least squares problem defined by “normal
equations”. Therefore, when overdetermined systems of linear equations
arise as part of solving nonlinear systems or optimization problems, this
procedure can, and should, be used.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 6

INEQUALITIES

6.1 INTRODUCTION

In this chapter, we consider inequalities that might or might not involve
interval parameters that are independent of the variable arguments of the in-
equalities. Most of our discussion concerns linear inequalities with interval
coefficients. In this case, they are generally obtained as linear expansions
of nonlinear functions. We discuss such expansions in Chapter 7.

In optimization problems, inequality constraints are often imposed on
the solution. See Chapters 13 and 14. In Section 12.5, 14.3, and 15.3,
we discuss another inequality that we introduce when solving optimization
problems.

Consider such a set of linear or nonlinear inequalities

pi(x) ≤ 0 for (i = 1, · · · , m) (6.1.1)

where x is a real vector of order n.
Using standard definitions from optimization theory, we say a point x

is feasible if pi(x) ≤ 0 for all i = 1, · · · , m. Otherwise x is infeasible.
In practice, we make rounding errors when evaluating pi(x). Hence,

there might be uncertainty whether pi(x) ≤ 0 or not. Furthermore, pi

might be an interval function, in which case the meaning of the inequality
requires clarification.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Therefore, we consider the set of inequalities

Pi(x) ≤ 0 for (i = 1, · · · , m) (6.1.2)

wherePi is an interval function. Suppose we evaluatePi(x)using outwardly
rounded interval arithmetic and compute the interval [P i(x), P i(x)].We say

the point x is certainly feasible if P i(x) ≤ 0 for all i = 1, · · · , m. We say
that x is certainly strictly feasible if P i(x) < 0 for all i = 1, · · · , m. We
say that x is certainly infeasible if P i(x) > 0 for at least one value of
i = 1, · · · , m.

A point x is feasible if it is certainly feasible. Also, x is infeasible if it is
certainly infeasible. Thus, it is possible to know without question whether
a point is feasible or infeasible even when rounding is present. A point
that is neither certainly feasible not certainly infeasible might be feasible or
infeasible. In this case, more accurate evaluation of the constraint functions
at a point might change the status of the point. If Pi contains an interval
parameter, there are points that are neither certainly feasible nor certainly
infeasible even when exact interval arithmetic is used.

Suppose we evaluate Pi over a box xI and obtain the interval
[P i(x

I), P i(xI)]. We say the box xI is certainly feasible if P i(xI) ≤ 0
for all i = 1, · · · , m. We say xI is certainly infeasible if P i(x

I) > 0 for any
i = 1, · · · , m. The strict cases for a box are defined similarly.

In noninterval problems, a goal might be to find a single feasible point.
When solving inequality constrained optimization problems, the corre-
sponding process is to eliminate certainly infeasible points from a given
box. Thus, all feasible points are retained, even when there is uncertainty
because of roundoff. When there is uncertainty in data, an inequality might
be expressed using interval parameters. Uncertainty does not alter the fact
that feasible points are always retained.

The process of interest for our purposes is the following: Given a box
xI, find the smallest subbox xI′of xI such that every point in xI that is outside
xI′ is certainly infeasible. If we replace xI by xI′, we know we have not
discarded any feasible point. In this way, we narrow the region of search
for (say) a minimum feasible point. In practice, we do not generally obtain
the smallest such subbox, xI′. However, that is our ideal goal.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

6.2 A SINGLE INEQUALITY

We now consider how to use a single nonlinear inequality p(x) ≤ 0. As-
sume we wish to use it to eliminate at least some of the certainly infeasible
points from a box xI. One way to do this is to use hull consistency or box
consistency which we discuss in Chapter 10. In this section, we consider
linearizing and solving an interval linear inequality.

A given inequality might already be linear in its variables. When it is
not, we can linearize it by using a Taylor expansion. See Chapter 7. An
expansion using slopes (as defined in Chapter 7) can also be used. We now
consider a single linear inequality. Thus, consider

C0 + C1x1 + · · · + Cnxn ≤ 0 (6.2.1)

where each Ci (i = 0, · · · , n) is an interval.
Assume we wish to eliminate points from a box xI that do not satisfy

this inequality. We first solve for x1. We replace the other variables by their
interval bounds and obtain

C0 + C1x1 + C2X2 + · · · + CnXn ≤ 0.

We solve this inequality for x1 and obtain a new interval bound X′
1 for x1.

We replace X1 by X1 ∩ X′
1 and repeat the procedure to get a new bound on

x2, · · · , xn.

Note that when we solve for x2, we can simplify the computation by
using dependent subtraction. This dependent operation is defined by (2.4.2).
When solving for x1, we compute the sum C2X2 +· · ·+CnXn. If we cancel
C2X2 from this sum and add C1X

′
1, we have the needed sum to solve for

x2. We do not have to recompute the sum of the other n − 2 terms.
In each step, we solve an inequality of the form

U + V t ≤ 0 (6.2.2)

for a variable t where U and V are fixed intervals. That is, we solve for a
set T of values of t for which there exists at least one value of u ∈ U and
at least one value of v ∈ V such that u + vt ≤ 0. Thus,

T = {t | ∃u ∈ U, ∃v ∈ V, u + vt ≤ 0}. (6.2.3)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

A simple way to solve U + V t ≤ 0 is to rewrite it as the equation

U + V t = [−∞, 0].

Then T = 1
V

([−∞, 0] − U), which we can evaluate using extended in-
terval arithmetic. Explicit results can be useful. To list them, denote
U = [a, b] and V = [c, d]. Then

T = [−∞, −a]
[c, d] .

From the rules for cset-based interval arithmetic in Chapter 4, we obtain

T =






[− a
d
, +∞]

if a ≤ 0 and d < 0
[− a

c
, +∞]

if a > 0, c < 0, and d ≤ 0
[−∞, +∞] if a ≤ 0 and c ≤ 0 ≤ d
[−∞, − a

d

] ∪ [− a
c
, +∞]

if a > 0 and c < 0 < d
[−∞, − a

c

]
if a ≤ 0 and c > 0

[−∞, − a
d

]
if a > 0, c ≥ 0, and d > 0

{−∞} ∪ {+∞} if a > 0 and c = d = 0
(6.2.4)

The last entry in this list is the set of values of t such that [a, b]+[0, 0]t ≤ 0
when a > 0. In practice, we generally seek finite solutions to an inequality.
When a > 0 and c = d = 0 the set of finite solution points is empty.

Note that if a > 0 and c < 0 < d , the solution consists of two
semi-infinite intervals. This occurs because we divide by an interval whose
interior contains zero. If this solution is intersected with a finite interval (see
above), the result can be empty, a single interval or two disjoint intervals.
In the latter case, we speak of an interval with an (open) gap removed. The
gap consists of certainly infeasible points.

6.3 SYSTEMS OF INEQUALITIES

Inequality constrained optimization problems generally have more than one
inequality constraint. Each can be separately used to reduce the box xI as

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

described in Section 6.2. However, combinations of the inequalities are
generally more successful in reducing xI. In this section, we describe how
inequalities can be combined.

To solve a system of linear equations, we precondition the system and
solve the preconditioned system using Gaussian elimination, the Gauss-
Seidel method, or the hull method. See Chapter 5. We use a similar ap-
proach to solve linear systems of inequalities. In this case, the hull method
is not applicable. In this chapter we describe a procedure for inequalities
that is similar to the Gauss-Seidel method for solving linear equalities.

It is convenient to say we “solve” a system of inequalities. However,
this merely means that we apply a procedure that eliminates some certainly
infeasible subboxes from a given box. As when applying a Gauss-Seidel
step to solve a system of linear equations, a step of the method does not
produce the smallest possible solution subbox.

The procedure has a certain similarity to the Fourier-Motzkin method
which is described, for example, by Dantzig and Eaves (1975). In the
Fourier-Motzkin method, the number of generated inequalities increases
and can become quite large. In our procedure, we also generate more
inequalities than occur in the original system. However, the number of
generated inequalities to be solved by the Gauss-Seidel-like procedure is
always less than twice the number of original inequalities.

Because we restrict the number of inequalities that can be generated,
we delete fewer infeasible points from a box than is possible with greater
effort. However, there is good reason for not expending too much effort.
In practice, one or more of the inequalities in a given optimization problem
is generally nonlinear. We linearize them to compute a solution. The
coefficients in the linear expansion are functions of the box in which we
are solving the system of inequalities. Therefore, the inequalities change
as the box is reduced. There is little point in getting the very best solution
to a linear system that is not the final one to be solved.

Once we have linearized the inequalities, we have a system of the form

AIx ≤ bI (6.3.1)

where AI is an interval matrix. It has as many rows (say m) as there are
inequalities. It has n columns where n is the number of variables. The

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

interval vector bI has m components.

If we multiply an inequality by a positive constant, we do not change
the inequality’s sense. That is, we do not change ≤ to ≥ . Also, we can
add two inequalities together if they have the same sense. Hence, a positive
linear combination of inequalities (having the same sense) yields another
valid inequality. Therefore, we can perform Gaussian elimination on the set
of inequalities provided we use positive multipliers. To eliminate a given
element in the coefficient matrix, the given element and the pivot element
must have opposite sign.

As pointed out in Section 5.6, to solve a set of linear equations by
interval Gaussian elimination, we first multiply by an approximate inverse
of the center of the coefficient matrix. This step reduces the growth due to
dependence of interval widths in the elimination process.

We use a similar procedure for systems of inequalities. It is somewhat
more complicated, however. The purpose in both procedures is to reduce
the effect of dependence.

Let Ac denote the center, m(AI), of AI. Using Ac, we generate a real
matrix B of nonnegative elements such that the modified system BAI ≤ BbI

can be solved with reduced interval width. Thus, B is a preconditioning
matrix similar to that used when solving linear interval equations. Now,
however, the number of rows of B might be any number from m to 2m − 1
depending on the problem.

The matrix B can be computed in the same way a matrix inverse is
generated. To aid in understanding, we now describe this more familiar
procedure.

Let Q be a square, nonsingular, real matrix. Initially, set B equal to
the identity matrix I. Use (for example) the Gauss-Jordan method of elim-
ination (e.g., see Stewart (1973)) to transform Q into the identity matrix.
Simultaneously, do every arithmetic operation on B that is done in the
elimination process on Q. When Q is finally transformed to I, the same
operations on B produce the inverse of Q.

Suppose Q is an m by n matrix and m �= n. If m ≥ n, the elimination
procedure can produce zero elements in position (i, j) for all i and j with
i �= j. If m < n, then zeros are produced only in the first m columns.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Now consider the case m = n so that the system of interval equations

QIx = cI (6.3.2)

is square. Let Qc be the center m(QI) of QI. Let B be an approximate
inverse of Qc. We can compute B as just described. Multiplying (6.3.2) by
B, we obtain

BQIx = BcI.

In this new equation, the coefficient matrix tends to be diagonally dominant
and can be solved without undue growth (from dependence) of interval
widths. See Section 5.6 for a more thorough discussion of this procedure.

When solving inequalities, we use a similar procedure. We generate a
preconditioning matrix B in essentially the same way. However, in the case
of inequalities, the elements of B must now be nonnegative. This restriction
might prevent completion of the elimination process to get the desired B.
However, this does not mean the process fails. It merely means we delete
fewer points from a box.

Having computed B, we multiply (6.3.1) by B, getting

BAIx ≤ BbI (6.3.3)

We can solve this relation with less growth of interval widths than for the
original relation AIx ≤ bI.

In general, we do column interchanges to compute B. Therefore, instead
of (6.3.3), our new system is

(BAIP)(P−1x) ≤ BbI (6.3.4)

where P is a permutation matrix and BAIP is the new coefficient matrix.
Note that the inverse P−1 of P is the transpose PT .

The order in which the inequalities are combined by the elimination
process is important. We discuss this aspect in the next section and return
to the solution process in Section 6.5.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

6.4 ORDERING INEQUALITIES

Consider a set of inequalities pi(x) ≤ 0 (i = 1, · · · , m). If we evaluate pi

for some i = 1, · · · , m over a box xI, we compute an interval

Pi(xI) = [P i(x
I), P i(xI)].

If P i(xI) ≤ 0, then pi(x) ≤ 0 for all x ∈ xI, and this particular constraint
cannot cause a point in xI to be infeasible. Therefore, this constraint can
be ignored when considering the box xI.

If P i(x
I) > 0, then pi(x) > 0 for all x ∈ xI. That is, every point x ∈ xI

is certainly infeasible. For these extreme cases, the effect of the particular
inequality is known. The case of interest is when

P i(x
I) ≤ 0 < P i(xI). (6.4.1)

Hereafter in this section, we assume that this condition holds for all i =
1, · · · , m.

We want to know which inequalities are more helpful in deleting cer-
tainly infeasible points of a given box xI. The corresponding question in
the noninterval case is: “Which constraints are most strongly violated at
some point?” This question is complicated by the fact that the different
inequalities might be scaled differently. In the interval case, we address
this complication by (implicitly) normalizing.

Consider the quantity

si = P i(xI)

P i(xI) − P i(xI)
(6.4.2)

for i = 1, · · · , m. If P i(xI) = 0, then si = 0 and (as pointed out above)
the constraint pi(x) ≤ 0 is of no help in eliminating certainly infeasible
point from xI.

If P i(x
I) = 0 and P i(xI) > 0, then si = 1 and xI cannot contain interior

points of the feasible region. That is, the constraint is about as useful as
possible in eliminating certainly infeasible points of xI. For constraints of

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

interest, 0 < si ≤ 1; and the larger si , the greater help the constraint tends
to be in eliminating points of xI.

Assume (6.4.1) holds for a set of m constraints. We order them so that
si ≥ si+1 for all i = 1, · · · , m − 1. Then the smaller the index i, the more
useful the constraint tends to be.

We proceed as follows. We first evaluate Pi(xI) for all i = 1, · · · , m.
(We discuss an alternative in Section 10.10.) If P i(x

I) > 0 for some i,
our process for solving the constraint inequalities is finished. There is no
feasible point in xI. If P i(xI) ≤ 0, then (while xI is the current box) we drop
the i-th constraint from the list of constraints to be solved. We linearize
those that remain.

Assume xI is not certainly infeasible and that all constraints for which
P i(xI) ≤ 0 (i.e., that are known to be inactive in xI) have been removed
from the list. We order the remaining constraints according to the value of
si as described above.

6.5 SECONDARY PIVOTS

We now return to the elimination process. Consider the step in which we
generate the preconditioning matrix B occurring in (6.3.3). We use Gaus-
sian elimination operations to zero appropriate elements of Ac = m(AI).

The same operations applied to the identity matrix generates B.
We shall denote the matrix that begins as Ac by A at any stage of the

elimination process even though it changes from step to step. Assume we
have generated the desired zero elements in the first r − 1 columns of A.
We describe the pattern of zero elements below. Next, we generate zero
elements in column r .

To do so, we use the element in position (r, r) as pivot element and
apply an elimination step to produce the desired zero elements in column
r . The pivot element is chosen to be the one of largest magnitude in row
r and it is placed in position (r, r) by interchanging columns if necessary.
This element arr is designated as the “primary pivot”.

When doing elimination among inequalities, the multiplier must be
positive so that sense of the inequality is not reversed. Therefore a given
pivot element can only be used to zero an element which is opposite in sign

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

to the pivot element. Therefore, we determine a “secondary pivot” whose
sign is opposite to that of the primary pivot. The secondary pivot in column
r is used to zero appropriate elements that have the same sign as the primary
pivot arr .

The secondary pivot is chosen (as described below) from the column
which is interchanged into column r when choosing the primary pivot. It
is chosen from rows r + 1, · · · , m. A copy of the secondary pivot row is
placed as row r + m

The secondary pivot is used to eliminate elements in positions (i, r) for
i = r +1, · · · , r +m−1 which are opposite in sign to it. Then the primary
pivot is used to zero elements in these positions which are opposite in sign
to the primary pivot. This latter step includes zeroing of the secondary
pivot. Note that the secondary pivot is zeroed only in its original position
and not in the copy placed in row r + m.

In earlier steps in which zeros are generated in columns 1, · · · , r − 1,
copies of the secondary pivot rows are placed in rows m+1, · · · , m+r−1.

When generating zeros in column r , elements in these rows are zeroed.

Suppose the primary pivot is positive. Then the primary pivot row can
be used to obtain a lower bound on xr; and the secondary pivot row (copied
in row r + m) can obtain an upper bound on xr . The roles are reversed if
the primary pivot is negative.

It might happen that when we want to zero elements in column r that all
the elements in positions (i, r) for i = r, ..., m have the same sign. If this
is also true for all columns j > r (that might be interchanged with row r),
then we are unable to continue the elimination process that we have been
describing.

Let r ′ denote the last column index for which zeros can be generated
as described above. We now do a second phase of elimination. We zero
elements above the diagonal. That is, we zero elements in positions (i, j)

for which i < j (j = 2, · · · , r ′). A primary pivot element is used to zero
opposite sign elements above it in its column. Elements that are copies of
secondary pivots and now occur in rows m+1, · · · , m+ r ′ are used to zero
opposite sign elements in their respective columns.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

6.6 COLUMN INTERCHANGES

Assume the inequalities have been placed in the order described in Section
6.4. Because this is a desirable order, we wish to not interchange rows of
A even though interchanges for pivot selection might enhance numerical
stability. However, we are free to interchange columns. In this section,
we discuss how to do so to get a “well positioned” secondary pivot and
improve numerical stability.

A procedure was described by Hansen and Sengupta (1983) for choos-
ing a pivotal column. We describe a simpler procedure in this section.

We do not perform row interchanges unless the current row is zero. In
decreasing order of importance, we want

1. the secondary pivot to occur as high in its column as possible,

2. the secondary pivot to be as large in magnitude as possible, and

3. the primary pivot to be as large in magnitude as possible.

Consider what happens when we use a (primary or secondary) pivot
element to eliminate an element in another row. We first “scale” the pivot
row by multiplying it by the multiplier. Then we add the scaled pivot row
to another row. If the multiplier is large in magnitude, the scaled pivot row
tends to dominate and information in the other row is lost by being shifted
off the accumulator in the addition step.

That is, information in the pivot row dominates and is saved while
information in the other row is lost. Conversely, if the multiplier is small
in magnitude, the information in the other row is retained. Preserving
information in the other row is why we want a multiplier to be small in
magnitude when doing ordinary Gaussian elimination. For the same reason,
we want the pivot elements to be large in magnitude.

In our case, if we have to use a pivot element small in magnitude, we
want the pivot row to contain highly useful information because it will be
retained intact. Thus, we want the dominating pivot row to correspond to
an inequality that is “strongly violated” in xI.

Because of the way rows are initially ordered (see Section 6.4), higher
rows are more useful in this sense than lower rows. It is for this reason that

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

we want the secondary pivot (which occurs lower than the primary pivot)
to occur as high in the column as possible. The smaller the pivot, the more
the pivot row dominates.

We wish to allow more useful information rather than less useful infor-
mation to dominate in this way. Thus, it is more important for the secondary
pivot to be large in magnitude than it is for the primary pivot to be large in
magnitude.

The reader might find it odd that we are willing to sacrifice numerical
stability (i.e., accuracy) in favor of maintaining the order of the inequalities.
The reason is that much of the time we solve the inequalities over a relatively
large box. Therefore, the linearization of the original nonlinear inequalities
does not produce very accurate approximation.

Moreover, we are satisfied merely to delete large infeasible portions of
such boxes. Accuracy is of little importance until the boxes become small
near the end of the optimization process. Therefore, we opt for efficiency
over accuracy in this part of the process.

In the next section, we describe our algorithm for computing the precon-
ditioning matrix B discussed in Sections 6.3 and 6.5. The above arguments
are used in choosing the columns to interchange for the pivot selection and
elimination procedure.

6.7 THE PRECONDITIONING MATRIX

In this section, we give an algorithm for doing Gaussian elimination to
transform Ac into a matrix with the desired zero elements. The algorithm
saves both the primary and the secondary pivot rows. The preconditioning
matrix B is computed by performing the same operations on a matrix that
begins as the identity matrix of order m.

We let A denote the matrix being transformed. Initially, A = Ac. We
retain the same name for the matrix throughout the elimination process even
though it changes with each step.

1. Set r = 0.

2. Replace r by r + 1.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

3. If r = m, set r ′ = m and go to step 13.

4. If r > n, set r ′ = n and go to step 13.

5. If aij = 0 for all i = r, · · · , m and all j = 1, · · · , n, set r ′ = r − 1
and go to step 13.

6. If row r of A is zero, move rows r + 1, · · · , m up by one and move
the old r-th row to become the m-th row.

7. Determine the smallest index s such that, for some j = r, · · · , n, the
elements arj and asj are nonzero and have opposite signs. If no such
index exists, set r ′ = r − 1 and go to step 13. Suppose arj and asj

have opposite signs for all j in some set J of indices r, · · · , n. Let j ′
denote the index j ∈ J for which asj is largest in magnitude. If there
is more than one such index, choose j ′ to be the index for which arj

(with j ∈ J) is largest in magnitude.

8. Interchange columns r and j ′.

9. Use the secondary pivot element (in position (s, r)) to zero the ele-
ments opposite in sign to it in positions (i, r) for i = r + 1, · · · , m.

10. Put a copy of row s into row m + r.

11. Use the primary pivot element (in position (r, r)) to zero the elements
opposite in sign to it in positions (i, r) for i = r + 1, · · · , m.

12. Go to step 2.

13. The first m rows of A are now in upper trapezoidal form. A submatrix
of r ′−1 rows and n columns has been appended to A. This submatrix
is composed of secondary pivot rows and is also in upper trapezoidal
form. We now begin zeroing elements above the diagonal of each of
the two submatrices. Set r = 0.

14. Set r = r + 1.

15. If r = r ′, go to step 17. If r = r ′ + 1, go to step 19.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

16. Use am+r,r as a pivot to zero any element (except the one in position
(r, r)) of opposite sign in column r .

17. Use arr as a pivot to zero any element (except the one in position
(m + r, r)) of opposite sign in column r .

18. Go to step 14.

19. Terminate.

6.8 SOLVING INEQUALITIES

In this section, we discuss how to “solve” inequalities with interval coeffi-
cients after they have been preconditioned.

Assume we have computed the preconditioning matrix B as described
in Section 6.7. Recall that, while performing the matrix operations given
by the steps of the algorithm, we compute B by doing the same operations
on a matrix that is initially the identity matrix of order m.

Recall that we wish to “solve” a set of linear inequalities

AIx ≤ bI. (6.8.1)

We precondition these inequalities by transforming them into

(BAIP)(P−1x) ≤ BbI. (6.8.2)

where P is the permutation matrix effecting the column interchanges de-
scribed in Section 6.7.

To simplify the following discussion, we assume no column inter-
changes were necessary. In this case, (6.8.2) takes the simpler form

MIx ≤ cI (6.8.3)

where MI = BAI and cI = BbI.
When we precondition a system of linear equations, we obtain a similar

system except that they are equations. See (5.6.1). We then choose one of

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

three procedures. The preferred choice is to use the hull method of Section
5.8. However, this method has no counterpart when solving inequalities;
and therefore we ignore it in the current context. Another choice is to
perform interval Gaussian elimination on the preconditioned system. A
third choice is to use the Gauss-Seidel method and simply solve the i-
th equation (i = 1, · · · , n) for the i-th variable (after replacing the other
variables by their interval bounds).

We have similar choices when solving (6.8.3). A procedure that uses
interval Gaussian elimination on the preconditioned system is difficult to
describe and complicated to program. Partly, this is because a positive or
negative element before elimination is applied to the real matrix Ac might
contain zero after elimination. We shall not describe such a procedure.

We note the following for a reader who might use such a method. Sup-
pose an interval element that we wish to eliminate contains zero as an inte-
rior point. We can use a positive (primary or secondary) pivot to eliminate
the negative part of such an element and a negative (secondary or primary)
pivot to eliminate the positive part of such an element. In this way, the
elimination step is done without changing the sense of an inequality.

We now describe a procedure similar to a Gauss-Seidel that can be
used to “solve” (6.8.3). To use this procedure, we make use of information
obtained when computing the preconditioning matrix B.

Suppose that when transforming Ac to obtain B, the element that ends
up in position (i, i) is used as a primary pivot. Then, in the i-th inequality
of (6.8.3), we replace all variables except the i-th by their interval bounds.
We then solve this inequality for the i-th variable. Before this primary pivot
was used, a row containing the corresponding secondary pivot is added to
row m + i of the list of inequalities. We solve this inequality for the same
variable xi in the same way as the i-th inequality.

Note that if row i provides an upper bound on xi , then row m+i provides
a lower bound and vice versa.

This might not exhaust all of the inequalities in the system (6.8.3). We
might not be able to complete the elimination process in Ac in getting B
because of the lack of a secondary pivot at some stage. Suppose we are
able to produce the desired zero elements in only some number k of the
columns where k < m. Then rows k + 1 through m of BAc might all be

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

nonzero in all of columns k + 1 through n. We do not use these rows of MI

in our procedure resembling Gauss-Seidel. They simply can be ignored or
treated separately using hull or box consistency as described in Chapter 10.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 7

TAYLOR SERIES AND
SLOPE EXPANSIONS

7.1 INTRODUCTION

In our optimization algorithms, we frequently expand the objective function
and constraint functions to first or second order terms. These expansions
can be in terms of slopes (see Section 7.7) or can be Taylor expansions
using derivatives. Our algorithms are more efficient if slope expansions
are used. However, we expect readers to be more familiar with derivatives
than slopes; and therefore we discuss the algorithms (in other chapters) as
if derivatives are used.

In this chapter, we discuss expansions of both kinds. We show how
interval methods can bound the remainder in Taylor series. There is no
remainder in a slope expansion.

Although slope expansions can replace those using derivatives, slopes
cannot replace derivatives in all situations. Note that monotonicity is ex-
pressed in terms of derivatives; and there is no counterpart in terms of
slopes. We make extensive use of monotonicity in this book.

We consider Taylor expansions for the one-dimensional case in Section
7.2 and for the multidimensional case in Section 7.3. Jacobians and Hes-
sians are discussed in Section 7.4. In Section 7.5, we discuss automatic
procedures to compute numerical values of derivatives evaluated over in-

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

tervals. In Section 7.6, we describe special procedures for sharpening the
bounds on the range of a function by more effective use of Taylor expan-
sions.

We introduce slope expansions of rational functions in Section 7.7 and
of irrational functions in Section 7.8. We discuss multidimensional slope
expansions in Section 7.9 and higher order slope expansions in Section
7.10. We describe slope expansions of nonsmooth functions in Section
7.11 and the automatic computation of slopes in Section 7.12.

7.2 BOUNDING THE REMAINDER IN TAYLOR EXPAN-
SIONS

Interval methods can be used very conveniently to bound the remainder
when truncating Taylor series. Consider a function f of a single variable.
For simplicity, assume f has continuous derivatives of any necessary order.
Expanding f (y) about a point x,

f (y) = f (x) + (y − x)f ′(x) + ... + (y − x)m

m! f (m)(x) + Rm(x, y, ξ)

(7.2.1)

where the remainder term (in the Lagrange form) is

Rm(x, y, ξ) = (y − x)m+1

(m + 1)! f (m+1)(ξ).

The point ξ lies between x and y. Hence, if x and y are in an interval
X, then ξ must be in X. Therefore, f (m+1)(ξ) ∈ f (m+1)(X) (see Theorems
3.2.2 and 4.8.14) and

Rm(x, y, X) = (y − x)m+1

(m + 1)! f (m+1)(X) (7.2.2)

bounds the remainder for any x ∈ X and any y ∈ X.
The cases m = 0 and m = 1 are of special interest later. For m = 0,

we have

f (y) ∈ f (x) + (y − x)f ′(X) (7.2.3)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Since this relation holds for all y ∈ X, we have

f (X) ⊂ f (x) + (X − x)f ′(X′). (7.2.4)

Note that we have replaced X in the argument of f ′ by X′. We explain
below why this is done. For m = 1,

f (y) ∈ f (x) + (y − x)f ′(x) + (y − x)2

2
f ′′(X) (7.2.5)

and

f (X) ⊂ f (x) + (X − x)f ′(x) + (X − x)2

2
f ′′(X′). (7.2.6)

We now explain why we have replaced X by X′ in (7.2.4) and (7.2.6).
We noted above that the quantity ξ in (7.2.1) must be in X. Therefore, we
replaced ξ by X in (7.2.3). However, this is a bound with the same numeric
value as X but is not analytically identical to X. Thus, in (7.2.4), while
X and X′ are numerically equal, they are not the same variable and are
therefore independent.

To illustrate this fact, consider the example in which f (x) = 1
x
. Since

f ′(x) = −1
x2 , (7.2.4) can be written as

f (X) ⊂ 1

x
− X − x

X′2 . (7.2.7)

If we assume that X′ is identically equal to X, we can replace X

X′2 by 1
X

and
write (7.2.4) as

f (X) ⊂ 1

x
− 1

X
+ x

X2
.

Completing the square to sharpen the bound on f (X), we rewrite this as

f (X) ⊂ x

(
1

X
− 1

2x

)2

+ 3

4x
. (7.2.8)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Let X = [1, 4] and x = 2.5. Then the interval value of the right member
of (7.2.8) is [0.30625, 1.9]. This interval does not contain the entire range
[0.25, 1] of f over X.

If we evaluate the right member of (7.2.7) without analytic changes, we
obtain [−1.1, 1.9] which contains f (X).

Elsewhere in this book, we do not distinguish between X and X′ in
relations such as (7.2.4) or (7.2.6). Instead, we replace X′ by X and rely
upon the reader to remember that, while X′ = X, the two intervals are
independent.

7.3 THE MULTIDIMENSIONAL CASE

Now let f be a function of n variables. Assume f has continuous partial
derivatives of any necessary order with respect to each variable. We first
expand f by a standard method and then by ways that produce better results
in interval applications. We begin with the case m = 0. Thus, the remainder
is in terms of first derivatives.

Let x and y be vectors of n components and let α be a scalar. We can
view f [x + α(y − x)] as a function of the single variable α and expand f

using (7.2.1). Expanding about α = 0 and then setting α = 1, we obtain

f (y) = f (x) + (y − x)T g[x + ξ(y − x)]
where 0 ≤ ξ ≤ 1 and where g is the gradient of f. Thus, the components

of g are gi = ∂f

∂xi
(i = 1, · · · , n).

If Xi is an interval containing both xi and yi (i = 1, · · · , n), then xi +
ξ(yi − xi) ∈ Xi . Therefore,

f (y) ∈ f (x) + (y − x)T g(X1, · · · , Xn). (7.3.1)

Note that all the arguments of g are intervals.
We now describe a method due to Hansen (1968) that permits some of

these arguments to be replaced by real (i.e., noninterval) quantities. This
means that the components of g are narrower intervals resulting in sharper
bounds on f (y), in general. See also Rokne and Bao (1987) and Bao and
Rokne (1988).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We illustrate the method of derivation by considering the case n = 3.
We first regard f (y1, y2, y3) as a function of y3 only. Using (7.2.1) to
expand about x3, we obtain

f (y1, y2, y3) = f (y1, y2, x3) + (y3 − x3)g3(y1, y2, ξ3). (7.3.2)

We now expand f (y1, y2, x3) about x2 as a function of y2 and obtain

f (y1, y2, x3) = f (y1, x2, x3) + (y2 − x2)g2(y1, ξ2, x3). (7.3.3)

Finally, we expand f (y1, x2, x3) as a function of y1 and obtain

f (y1, x2, x3) = f (x1, x2, x3) + (y1 − x1)g1(ξ1, x2, x3). (7.3.4)

Combining equations (7.3.2), (7.3.3), and (7.3.4), we obtain

f (y) =f (x) + (y1 − x1)g1(ξ1, x2, x3) + (y2 − x2)g2(y1, ξ2, x3)

+ (y3 − x3)g3(y1, y2, ξ3). (7.3.5)

If x ∈ xI and y ∈ xI, then ξi ∈ Xi (i = 1, 2, 3).
In applications, we sometimes want a linear bound on f (y) for all

y ∈ xI. Therefore, we replace components of y in the arguments of the
components of g by xI and we replace ξi (i = 1, 2, 3) by the bounding
interval Xi . We obtain

f (y) ∈f (x) + (y1 − x1)g1(X1, x2, x3) + (y2 − x2)g2(X1, X2, x3)

+ (y3 − x3)g3(X1, X2, X3).

For n variables, the corresponding expression is

f (y) ∈ f (x) +
n∑

i=1

(yi − xi)gi(X1, · · · , Xi, xi+1, · · · , xn). (7.3.6)

Compare this expression with (7.3.1). In (7.3.1), all the arguments
of all components of g are intervals. In (7.3.6), a fraction 1

2

(
1 − 1

n

)
are

real. Therefore, an interval bound on f (y) using (7.3.1) is generally not as

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

narrow as the corresponding one computed using (7.3.6). The amount of
work to compute the bound is the same in either case. This is because, to
bound rounding errors, we treat real arguments as degenerate intervals.

To illustrate the superiority of (7.3.6) over (7.3.1), consider the function

f (x1, x2, x3) = x1

x2 + 2
+ x2

x3 + 2
+ x3

x1 + 2
. (7.3.7)

Let Xi = [−1, 1] (i = 1, 2, 3). Using (7.3.1), we find f (X1, X2, X3) ⊂
[−6, 6]. Using (7.3.6), we compute [−4, 4], a much better result. The actual
range of f over the given box is [−3, 3]. Even using (7.3.6), the result is
generally not sharp because of dependence.

Note that if we evaluate f in its original form (7.3.7) (i.e.,without ex-
panding) over xI, we compute the sharp result [−3, 3]. For this example,
the Taylor expansion yields a wider interval result than direct evaluation of
f .

This exemplifies an unsolved problem in interval analysis. It is not
known when a centered form or Taylor expansion yields a better or worse
result than direct evaluation. Generally, they yield a sharper result when
the width of the interval (or box) is small.

The width of the bound given by the right member of (7.3.6) depends
on the order in which the variables are indexed. It is difficult to determine
the best order in this regard.

We can use the same process of sequential expansion for higher order
Taylor expansions. For example, a first order expansion (with error in term
of second derivatives) yields

f (y) ∈ f (x) + (y − x)T g(x) + 1

2
(y − x)T H(x, xI)(y − x) (7.3.8)

where H(x, xI) is an interval enclosure of the Hessian. For n = 3,

H(x, xI) =



h11(X1, x2, x3) 0 0
h21(X1, x2, x3) h22(X1, X2, x3) 0
h31(X1, x2, x3) h32(X1, X2, x3) h33(X1, X2, X3)





Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

where

hij (x) =






∂2f

∂x2
i

for j = i (i = 1, · · · , n) ,
2∂2f

∂xi∂xj
for j < i (i = 2, · · · , n; j = 1, · · · , i − 1) ,

0 otherwise.

We have chosen to write H as a lower triangular matrix, rather than a
symmetric one, so that fewer terms occur in evaluating the bound on f (y).

The fewer terms in an expression, the less likely dependence is to cause
loss of sharpness when evaluating the expression over a box.

In n dimensions, the arguments for the i-th column of H (on and below
the diagonal) are (X1, ...Xi, xi+1, · · · , xn) for all i = 1, · · · , n.

So far in this section, we have been concerned with the number of real
versus interval arguments in an expansion. We can also focus attention on
the amount of computation required. Still another consideration is depen-
dence. The form in which an expansion is written can be just as important
as the proportion of real arguments. We now consider some examples.

Let f1 and f2 be functions of n variables. Suppose we wish to expand
their product f1·2 = f1f2. To discuss ways to obtain this expansion, we
introduce some shorthand notation.

We let (i) denote (X1, · · · , Xi, xi+1, · · · , xn) for i = 1, · · · , n. Thus,
for example, fj (i) denotes fj (X1, · · · , Xi, xi+1, · · · , xn). We could let (0)

denote (x1, · · · , xn). However, we use the more common notation (x).

We use (xI) to denote (X1, · · · , Xn) when convenient. However, when
a summation index j in the symbol (j) takes the value n, then (n) also
denotes (X1, · · · , Xn).

Denote

gij = ∂fi

∂xj

(i = 1, 2; j = 1, · · · , n) .

If we expand fi (i = 1, 2) using (7.3.6), we obtain

fi(y) ∈ fi(x) +
n∑

j=1

(yj − xj)gij (j). (7.3.9)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

This expansion is valid for xi ∈ Xi and yi ∈ Xi (i = 1, · · · , n). Using this
same method to expand f1·2 we obtain

f1·2(y) ∈ f1·2(x) +
n∑

j=1

(yj − xj)[f1(j)g2j (j) + g1j (j)f2(j)].

(7.3.10)

Now suppose that we simply take the product of the expanded forms of
f1 and f2 as given by (7.3.9). By combining terms appropriately, we obtain

f1·2(y) ∈f1·2(x) + f1(x)

n∑

j=1

(yj − xj)g2j (j)

+ f2(xI)

n∑

j=1

(yj − xj)g1j (j). (7.3.11)

The factor f2(xI) in the right member occurs because we have replaced the
argument y by xI in the (unexpanded) function f2(y). Other similar forms
are possible by combining terms in other ways

Let us now compare the two forms (7.3.10) and (7.3.11). The latter has
advantages that we list and then discuss.

(a) Fewer multiplications are required. Once the required function
evaluations are done, (7.3.10) requires 3n + 1 multiplications
while (7.3.11) requires only 2n + 3.

(b) A given function is evaluated using fewer sets of arguments. In
(7.3.10), f1 and f2 must each be evaluated for n different sets
of arguments. In (7.3.11), f1 and f2 are each evaluated for only
one set of arguments.

(c) The form given in (7.3.11) is factored. That is, dependence is
reduced.

The functions gij (j) (i = 1, 2; j = 1, · · · , n) are evaluated with the
same sets of arguments for either form of expansion. The difference in real
versus interval arguments occurs only in the arguments of f . For (7.3.10),

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

the ratio of the number of real to the number of interval arguments is 1− 2
n+1 .

For (7.3.11), it is 1. For moderately large n, these ratios are much the same.

Despite the fact that (7.3.11) has more interval arguments than (7.3.10),
it has a more favorable factored form. This permits it to provide sharper
results by taking advantage of subdistributivity. (See Section 3.3.) In
general, (7.3.11) can be the preferable form despite the fact that it contains
more interval arguments than (7.3.10). This is especially true if computation
speed is important.

As an example, let f1(x) = x2
1 + x2

2 and f2(x) = x1
x2

. Let us use the two

forms to evaluate expansions of f1·2(x) = f1(x)f2(x) for X1 = [−1, 3]
and X2 = [1, 3]. From (7.3.10), we compute f1·2(y) ∈ [−88.5, 93.5].
From (7.3.11), we compute f1·2(y) ∈ [−71.5, 76.5]. Thus (7.3.11) pro-
duces sharper bounds than (7.3.10) even though a larger proportion of its
arguments are intervals.

Less dependence is what enables (7.3.11) to give sharper results in this
example. For narrow interval arguments, dependence is a less important
concern. Therefore, the relative performance of the two expansion methods
can depend on interval widths. The number of variables also affects the
choice of form.

Instead of expanding the quotient of two functions, we can use the
quotient of their expansions in a similar way. Thus, we can write the

expansion of f1/2(x) = f1(x)

f2(x)
as

f1/2(y) = f1/2(x) + 1

f2(xI)

n∑

j=1

(yj − xj)g1j (j)

− f1(x)

f2(x)f2(xI)

n∑

j=1

(yj − xj)g2j (j). (7.3.12)

We have argued that when expanding a product (quotient) of two func-
tions in terms of first order derivatives, it is better to use a product (quotient)
of expansions rather than to directly expand the product (quotient). This is
also true when the expansions are in terms of slopes.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

It also seems likely that functions more complicated than simple prod-
ucts or quotients should be expanded piecemeal rather than as a single
function. This is likely to be true for higher order expansions as well.

7.4 THE JACOBIAN AND HESSIAN

Consider a vector g that is the gradient of a function f of n variables. The
Jacobian J of g has elements

Jij = ∂gi

∂xj

= ∂2f

∂xi∂xj

(i, j = 1, · · · , n).

As a noninterval matrix, J is symmetric. To compute J, we need only
compute the lower (or upper) triangle and use symmetry to get the elements
above the diagonal.

But the situation differs in the interval case if we want to have some
noninterval arguments as discussed in Section 7.3. Suppose we expand
each component of g as in (7.3.6) using the same pattern of real and interval
arguments given therein. The resulting Jacobian is not symmetric. A real
argument of Jij might be an interval argument in Jji . To compute an interval
enclosure JI in this case, we must compute all n2 elements. We can have
symmetry by using intervals for all the arguments. But then the interval
elements of JI are wider than necessary.

In this section, we consider how to have symmetry without using all
interval arguments. We also consider how to compute both the Hessian of
f and the Jacobian of the gradient of f . In the interval case, they can differ
(if we want some arguments to be real) because the pattern of real versus
interval arguments can differ.

Consider the case n = 2. Let us expand g1 with respect to x2 and then
x1. Let us expand g2 in the opposite order. Then

g(y) ∈ g(x) + J(x, xI)(y − x) (7.4.1)

where

J(x, xI) =
[

J11(X1, x2) J12(X1, X2)

J21(X1, X2) J22(x1, X2)

]

.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

If g is the gradient of f , then ∂g1
∂x2

= ∂g2
∂x1

and, hence, J21(X1, X2) =
J12(X1, X2) and J(x, xI) is symmetric. It can be shown that, in general,
J(x, xI) cannot be made symmetric for any n > 2 and still have the maxi-
mum possible number of real arguments.

However, we can have symmetry without replacing all arguments by
intervals; but, we must use fewer than the maximum possible number of
real arguments. As an example, consider the case n = 3. Expand g1 and g2

in the order (of indices of variables) 3, 2, 1. Expand g3 in the order 1, 2, 3.
Then

J(x, xI) =



J11(X1, x2, x3) J12(X1, X2, x3) J13(X1, X2, X3)

J21(X1, x2, x3) J22(X1, X2, x3) J23(X1, X2, X3)

J31(X1, X2, X3) J32(x1, X2, X3) J33(x1, x2, X3)



 .

In this form, J(x, xI) is not symmetric. However, if we replace
J21(X1, x2, x3) by J21(X1, X2, x3) and J32(x1, X2, X3) by J32(X1, X2, X3)

we gain symmetry and still have real arguments for some element of J(x, xI).

We have no general rule for retaining the maximum number of real
arguments while gaining symmetry in this way.

In later chapters, we sometimes want to use both of the expansions

f (y) ∈ f (x) + (y − x)T g(x) + 1

2
(y − x)T H(x, xI)(y − x)

and

g(y) ∈ g(x) + J(x, xI)(y − x).

The former is a repeat of (7.3.8) and the latter is a repeat of (7.4.1). Function-
ally, H(x, xI) and J(x, xI) in these equations are the same matrix. However,
if we wish to have real (instead of interval) arguments everywhere possible
in their matrix elements, then they become different matrices when evalu-
ated. This is because their patterns of real and interval arguments differ.

Suppose, we use an expansion of the form (7.3.6) for each component
of g. Then the arguments of Jij are (X1, ...Xj , xj+1, · · · , xn) for all i =
1, · · · , n. These arguments are the same as those for the elements of the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

lower triangle of the Hessian H as derived in Section 7.3. That is, if we
compute the Jacobian J as just indicated, we have the necessary data to
form the Hessian. To get the elements of H below the diagonal, we need
only multiply the corresponding elements of J by 2.

If we replace certain real arguments of J(x, xI) by intervals to get sym-
metry, the new lower triangle of J(x, xI) still yields a lower triangle that
can be used to determine H(x, xI). That is, H(x, xI) need not be computed
separately despite such changes in J(x, xI).

7.5 AUTOMATIC DIFFERENTIATION

Nonlinear equations and optimization problems can be solved without re-
sorting to expansions using derivatives or slopes. For example, see the
discussion of hull consistency in Chapter 10. However, use of expansions
can speed the solution process. This is especially true when the region of
search becomes asymptotically small. In this section, we briefly discuss
how derivatives can be automatically computed. This is an extremely valu-
able asset because it not only saves the human effort of differentiating and
coding of derivatives, but avoids possible errors in doing so.

In Section 7.12, we give a similar discussion for generation of slopes.
Divided differences with error bounds could be used but this approach
should be avoided.

One way to obtain derivatives is to first use a program such as MAC-
SYMA, Maple, Mathematica, or REDUCE to perform the algebra of the
differentiation process. Such a process is sometimes called symbolic dif-
ferentiation. Analytic expressions for derivatives of a given function are
produced automatically. Coding these expressions to evaluate the deriva-
tives can also be automated.

If properly implemented, this can be the more desirable way to com-
pute derivatives in interval applications. This is because the symbolic ex-
pressions can be written to reduce the effect of dependence. However, this
approach can often lead to lengthy formulas for derivatives that require con-
siderable computation to evaluate. The complexity of such formulas can
often be greatly reduced with an algorithm that identifies and eliminates
multiple common subexpressions. Proper implementation of symbolic dif-

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

ferentiation in a form suitable for use in interval programs is not generally
available.

A more commonly used procedure is automatic differentiation. This
is a procedure (in two forms with variations) for numerically generating
values of derivatives without obtaining their analytic expressions. It is an
idea that has occurred independently to various people. One of them was
Moore (1965) (see also Moore (1966)), who was the first to apply it to
interval analysis. However, earlier references to noninterval applications
can be found in Griewank (1989, 2000).

Rall (1969, 1981, 1983, 1984, 1987) and his colleagues have made con-
siderable use of automatic differentiation in interval applications. Some
other publications on the subject are Iri (1984) and Speelpenning (1980).
For a thorough discussion of automatic differentiation in noninterval appli-
cations, see Griewank (2000).

Automatic differentiation is very efficient (see below). Some authors
have pointed out that it is much more efficient than symbolic differentiation.
For example, see Griewank (1991, 2000). However, a proper comparison
for interval applications must take into account the fact that, a symbolic
expression for a derivative can be written to reduce the effect of dependence.
The sharper bounds available using symbolic differentiation might provide
better overall efficiency in solving a problem by interval methods.

Assume that a computer program exists for evaluating a given function
f . Automatic differentiation can be performed using a precompiler that
generates code for computing the derivative of the function as defined by
the code to evaluate it. A better method is to implement a user-defined type
together with operator overloading. This is called a “class” in the language
C++ and a “module” in Fortran.

We now briefly discuss the so-called “forward form” of automatic dif-
ferentiation to illustrate the ideas involved. A “backward form” is discussed
in various publications. For a brief discussion, see Kearfott (1996). For a
complete discussion of both forms and variations, see Griewank (2000).

The steps to evaluate a rational function involve only the arithmetic
operations of addition, subtraction, multiplication and division. Raising
a quantity to a power can also be included in the set of operations. Each
of the four basic operations involves two quantities that either have been

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

computed in a previous step or are primitives such as a constant or a single
variable.

Consider the one-variable case. The derivative of the result of a com-
putational step involving functions f1 and f2 can be obtained using Table
7.1. The derivative of each primitive and each irrational function used must

Computational step Step result derivative

f1 ± f2 f ′
1 ± f ′

2

f1f2 f1f
′
2 + f ′

1f2

f1
f2

f ′
1f2−f1f

′
2

f 2
2

Table 7.1: Computational Step Derivatives

be known.
We illustrate the method with a simple example. Consider the func-

tion f (x) = 1
x

+ x sin x. Define the primitives f1 = 1 and f2 = x and
their derivatives f ′

1 = 0 and f ′
2 = 1. A code to evaluate f might involve

generation of values on the functions

f3 = f1

f2
,

f4 = sin x,

f5 = f2f4,

f = f3 + f5.

In some manner or other, we must know that the derivative of sin x is cos x.

Using the definitions of the functions f3, f4, and f5 and the rules in Table
7.1, we obtain

f ′
3 = f ′

1f2 − f1f
′
2

f 2
2

,

f ′
5 = f2f

′
4 + f ′

2f4,

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

and

f ′ = f ′
3 + f ′

5.

Since we know the primitives f1 and f2 and their derivatives and the special
function f4 = sin x and its derivative, we can compute the derivative of
f using the above equations. Code to compute the right-hand side of
each equation can be generated automatically. Note that the evaluation is
numerical, not analytic.

Hopefully, the readers understand what is involved in automatic dif-
ferentiation from this abbreviated introduction. Details can be found in
the references cited above. We merely wish to make readers aware that
automatic procedures exist that are alternatives to symbolic differentiation.

The procedure we have described is suitable for computing the deriva-
tive of a function of a single variable. It can also serve for the multidimen-
sional case. However, as we showed in Section 7.3, it is better to compute
the expansion of a product or quotient by using the product or quotient of
the individual expansions. This alternative method also can be incorporated
into an automatic procedure.

Automatic differentiation can be used, for example, to evaluate the
gradient of a multivariable function. Let r denote the ratio of the amount
of work to evaluate the gradient of a function and the work to evaluate the
function itself. Wolfe (1982) observed that the value of r is usually around
1.5 in practice.

Bauer and Strassen (1983) used complexity theory to show that, for a
certain way of counting arithmetic operations, the theoretical value of r is
at most 3. For another proof, see Iri (1984). Griewank (1989) gives an
explicit algorithm and shows that, for it, r ≤ 5.

We now consider an example to illustrate the advantage of symbolic over
automatic differentiation from consideration of dependence. Let f (x) =
u(x)

v(x)
where u(x) = x2 + x and v(x) = x2 − x. The derivative is

f ′(x) = v(x)u′(x) − u(x)v′(x)

v(x)2
.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Using automatic differentiation, we get, in effect,

f ′(X) = (X2 − X)(2X + 1) − (X2 + X)(2X − 1)

(X2 − X)2
.

For X = [4, 6], automatic differentiation produces f ′(X) = [−3.72, 2.76].
But, the numerator in this expression for f ′(X) can be simplified to

−2X2. If we do so, and evaluate the result, we compute the better result
[−0.72, −0.0312].

7.6 SHARPER BOUNDS USING TAYLOR EXPANSIONS

Expansions that generally give sharper interval bounds than (7.2.3) or
(7.3.6) can be computed at the expense of additional computing. We simply
use each occurrence of a given variable as a separate variable and use the
sequential expansion process described in Section 7.3.

For example, we rewrite F(x) = x2 sin x in the form

f (x1, x2, x3) = x1x2 sin x3.

We use the expansion (7.3.6) and then set x1 = x2 = x3 = x and y1 =
y2 = y3 = y. We obtain

f (y, y, y) = f (x, x, x)

+ (y − x)[g1(ξ1, x, x) + g2(y, ξ2, x) + g3(y, y, ξ3)].

If x ∈ X and y ∈ X, then ξi ∈ X (i = 1, 2, 3). Hence, since f (x, x, x) =
F(x), we have

F(y) ∈ F(x) + (X − x)(x sin x + X1 sin x + X1X2 cos X3).

(7.6.1)

The intervals X1, X2, and X3 each equal X. However, they must be treated
as independent because they represent bounds on the separate quantities ξi

(i = 1, 2, 3). For example, we cannot write X1X2 as X2.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

If we simply use (7.2.4) to expand F , we obtain

F(X) ⊂ F(x) + (X − x)(2X sin X + X2 cos X) (7.6.2)

which produces a wider interval bounding F(X), in general. For exam-
ple, if X = [0, 1], and if we choose x = m(X) = 0.5, then (7.6.1)
yields F([0, 1]) ⊂ [−0.7398, 0.9795] while (7.6.2) yields F([0, 1]) ⊂
[−1.2217, 1.4614]. The correct range of F over X = [0, 1] is [0, sin(1)]
which to four significant digits is [0, 0.8415].

The extra accuracy is obtained at the cost of some extra work. Note that
(7.6.1) is somewhat more complicated than (7.6.2). For more complicated
functions, the extra work is greater.

This procedure was introduced and discussed in more detail by Hansen
(1978a). Alefeld (1981) showed that when F is a polynomial, the same
improved expansion can be obtained by more direct means.

Note that procedures such as this can never produce sharper results
than the use of monotonicity as described in Section 3.4. For example, the
function F(x) = x2 sin x discussed above is easily shown to be monotonic
over [0, 1] by evaluating its derivative over this interval. Therefore, the
method of Section 3.6 is applicable and yields exact bounds on the range
of F over [0, 1].

7.7 EXPANSIONS USING SLOPES

Krawczyk and Neumaier (1985) described a systematic way to obtain ex-
pansions similar to those discussed in Section 7.6. This is done by use
of slopes that we define and discuss below. Their method is applicable
for a rational function of a single variable. Neumaier (1989) extended the
procedure to the multidimensional case which we discuss in Section 7.9.
The procedure has also been extended to the case of irrational functions
which we discuss in Section 7.8. See Rump (1996). Ratz (1998) extended
the use of slopes to nonsmooth functions. See Section 7.11. Automatic
evaluation of slope is discussed in Section 7.12. Other similar expansions
are mentioned in Section 7.13. Automatic evaluation of slopes is discussed
in Section 7.12. Other similar expansions are mentioned in 7.13.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We first discuss a function f of a single variable. We want an expansion
of the form

f (y) = f (x) + g(x, y)(y − x). (7.7.1)

This equation is an identity if

g(x, y) = f (y) − f (x)

y − x
. (7.7.2)

Note that equation (7.7.1) is the same as Moore’s centered form described
in Section 3.3.The function g(x, y) is called the slope function. It is the
slope of the chord joining the ordinates of f at x and y. Its limit as y

approaches x is the slope of the tangent to f at x. That is, in the limit, the
slope is the derivative f ′(x).

We can regard (7.7.1) as a factorization of f (y) − f (x). For example,
if f (x) = x2, then g(x, y) = y + x and (7.7.1) can be written as

y2 − x2 = (y + x)(y − x)

Given an interval X, inclusion isotonicity of containment sets (See
Lemma 4.8.8) assures that

f (y) ∈ f (x) + g(x, X)(y − x) (7.7.3)

for arbitrary x and all y ∈ X. Therefore,

f (X) ⊂ f (x) + g(x, X)(X − x).

The right member does not generally provide sharp bounds on f (X)

despite the fact that it arises from the identity (7.7.1). To illustrate this fact,
let f (x) = x2. We obtain

X2 ⊂ x2 + (X + x)(X − x).

For X = [−1, 3] and x = 1, the left member is [0, 9], but the right member
is the wider interval [−7, 9]. Dependence has caused widening of the latter
result.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

If f is rational, we can analytically divide f (y) − f (x) by y − x and
obtain g(x, y) explicitly as we did above for f (x) = x2. When f is not
rational, we can sometimes obtain g(x, X) numerically. See Section 7.8.

The relation (7.7.3) is a (first order) slope expansion. Compare it with
the corresponding Taylor form

f (y) ∈ f (x) + f ′(X)(y − x), (7.7.4)

which is valid provided both x and y are in X. However, in the slope
expansion (7.7.3), x need not be in X. When we do have x ∈ X and y ∈ X,

if follows that g(x, X) ∈ f ′(X). Therefore, the slope expansion provides
at least as narrow a bound on f (y) for y ∈ X as does the Taylor expansion.

In effect, some of the occurrences of the interval X in the expression
of the derivative f ′(X) have been replaced in g(x, X) by the degenerate
interval x. Therefore, (7.7.3) generally produces a narrower interval bound
on f (y) than (7.7.4).

In Section 7.2, we noted that from (7.2.3) (which is the same as (7.7.4)),
the Taylor expansion gives the relation

f (X) ⊂ f (x) + f ′(X′)(X − x)

where X′ = X but that X′ and X are independent intervals. In the corre-
sponding relation

f (X) ⊂ f (x) + g(x, X)(X − x)

from (7.7.3) for slopes, the interval X in g(x, X) and in the factor X−x are
identically the same. This is another advantage of a slope expansion over
a Taylor expansion because there is an opportunity to analytically reduce
multiple occurrences of the interval X.

When dependence does not cause widening, the interval value of the
slope expression f (x)+g(x, X)(X−x) provides sharp bounds on the range
of y for y ∈ X. The corresponding Taylor expression f (x)+f ′(X′)(X−x)

does not. However, dependence generally prevents us from computing
sharp results when evaluating the former expression.

For a small box, the (exact) slope expression generally yields sharper
bounds on f (X) than direct evaluation of f (X) because f (x) is a good

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

approximation to values of f for all x in the (small) box. Therefore, loss
of sharpness due to dependence occurs only in g(x, X)(X − x) which is
relatively smaller in magnitude than f (x). Note that for rational functions,
the slope form is the same as rewriting f in centered form.

For the above example in which f (x) = x2, we have g(x, X) = x +X.

For X = [1, 2] and x = 2, we find g(x, X) = [3, 5]. For the corresponding
Taylor form, (7.7.4), we have f ′(X) = 2X = [2, 6], which is a wider
interval. Note that if we write f ′(x) as X+X, then the function g(x, X) =
x + X can be viewed as being obtained from f ′(X) by replacing one
occurrence of X by x. As a result, g(x, X) is a narrower interval than
f ′(X).

For any function, the wider the interval, the more the width of f ′(X)

exceeds that of g(x, X). If we let the width of the interval approach zero
asymptotically, the difference between derivatives and slopes disappears.

The slope of a composite function is easily obtained. Suppose f (x) =
v(u(x)).Then

g(x, y) = v(u(y)) − v(u(x))

y − x
(7.7.5a)

=
(

v(u(y)) − v(u(x))

u(y) − u(x)

)(
u(y) − u(x)

y − x

)

. (7.7.5b)

Therefore, the slope of v(u(x)) is the product of two slopes. The first factor
is the slope of v with u(y) regarded as the variable and u(x) regarded as
the fixed point. The other factor is the slope of u.

We give an example illustrating the computation of the slope of a com-
posite function at the end of Section 7.8.

An extension of (7.7.5b) gives a chain rule for slopes similar to that for
derivatives. For example, if

f (x) = w(u(x), v(x)),

then

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

g(x, y) =w(u(y), v(y)) − w(u(x), v(x))

y − x

=
(

w(u(y), v(y)) − w(u(x), v(y))

u(y) − u(x)

)(
u(y) − u(x)

y − x

)

+
(

w(u(x), v(y)) − w(u(x), v(x))

v(y) − v(x)

)(
v(y) − v(x)

y − x

)

.

In the remaining chapters of this book, we discuss the use of derivatives
in solving optimization problems. We do so since derivatives are more
familiar than slopes. In practice, use slopes rather than derivatives whenever
possible.

Slope expansions have a useful aspect. The mean value theorem does
not hold for functions of a complex variable. Let z and w be complex points
in a box zI in the complex plane. There need not exist a point ξ in zI such
that

f (w) = f (z) + (w − z)f ′(ξ). (7.7.6)

Therefore, we cannot obtain the relation

f (w) ∈ f (z) + (w − z)f ′(Z)

corresponding to (7.2.4) which holds for real variables.
However, the identity

f (w) = f (z) + (w − z)g(z, w)

where g(z, w) is a complex version of the slope yields

f (w) ∈ f (z) + (w − z)g(z, zI)

for arbitrary z and any w ∈ zI.

This enables us to derive an interval Newton method for finding complex
zeros of a complex function. We do not do so; but the derivation follows
that for the real case in Section 11.2.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

7.8 SLOPES FOR IRRATIONAL FUNCTIONS

We have noted that for any rational function, f (x), we can analytically
divide f (y) − f (x) by y − x. This can also be done for certain algebraic

functions. Note that, for f (x) = x
1
n (n = 2, 3, 4, · · ·) we have

f (y) − f (x) = y − x

n−1∑

k=0
x

k
n y

n−1−k
n

.

In particular, for n = 2, we obtain the slope of the square root function.

That is, if f (x) = x
1
2 , then

g(x, y) = 1

x
1
2 + y

1
2

.

However, such analytic division is not possible when f is a transcen-
dental function. Nevertheless, we can compute numerical values of slopes
for certain transcendental functions; and we can compute bounds on slopes
for others. What we need for a given function f is to be able to compute

a value, or at least, a bound, for the ratio (i.e., the slope) f (y)−f (x)

y−x
over an

interval.
Let x be fixed and consider g(x, y) as a function of y. Rump (1996)

(see also Ratz (1998)) proves that g(x, y) is a monotonic function of y if
f (y) is convex or concave. His proof is as follows. Assume that f (y) is
continuously differentiable. Then

∂

∂y
g(x, y) = ∂

∂y

(
f (y) − f (x)

y − x

)

= (y − x)f ′(y) − f (y) + f (x)

(y − x)2
.

If f is convex, the numerator of this quotient is ≥ 0. If f is concave, it is
≤ 0. That is, g(x, y) is a monotonically nondecreasing function of y if f is
convex, and is a monotonically nonincreasing function of y if f is concave.

If f is convex over an interval X, it follows that

g(x, X) =
[

f (X) − f (x)

X − x
,
f (X) − f (x)

X − x

]

(7.8.1)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

and if f is concave,

g(x, X) =
[

f (X) − f (x)

X − x
,
f (X) − f (x)

X − x

]

. (7.8.2)

If x is an endpoint of X, then an endpoint of g(x, X) in these expressions
becomes an indeterminate form whose value is the derivative f ′(x).

Even though x is real, the value of f (x) is an interval because rounded
interval arithmetic must be used to bound its value. This must be taken into
account when determining the slope. It is only a slight complication.

If |X − x| or |X − x| is small, rounding errors can be large when
computing the slope using (7.8.1) or (7.8.2). When one or both of these
quantities become too small, it is best to use a derivative rather than a slope
when the slope is to be computed as a difference quotient.

Let ε denote the smallest positive machine number such that 1 + ε

is represented as a machine number greater than 1 in the number system
used on the relevant computer. A standard rule when computing difference
quotients as approximations for derivatives has been to choose the differ-

ence in variable values to be greater than ε
1
2 . Following this rule, we use a

derivative rather than a slope (expressed in terms of a difference quotient)

if |X − x| < ε
1
2 of if |X − x| < ε

1
2 .

Note that ex is a convex function of x. So is xn for n even or for n odd
if x ≥ 0. Also, ln(x) is concave and so is xn when n is odd and x ≤ 0.

The slopes of some functions can be obtained because they are com-
positions of other functions whose slopes are known. For example, the
inverse hyperbolic functions can be expressed in terms of square roots and

the logarithm. An example is arcsinh(x) = ln[x + (x2 + 1)
1
2].

Use of monotonicity can also be used to reduce the effort to obtain the
slope for the function f (x) = xn. Its slope can be expressed as

yn − xn

y − x
=

n−1∑

k=0

xkyn−1−k. (7.8.3)

It requires quite a bit of computing to evaluate this sum if n is large. How-
ever, if n is even and x is an interior point of an interval X, then the slope

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

is

g(x, X) =
[

Xn − xn

X − x
,
X

n − xn

X − x

]

. (7.8.4)

This form requires less computing for n > 4.
It can be advantageous to use (7.8.3) rather than (7.8.4) because the

former can be manipulated analytically before numerical values are inserted
for evaluation. For example, consider the function

f (x) = x4 + 3x3 − 96x2 − 388x + 480

which we consider again in Section 9.9. If we determine its slope analyti-
cally using (7.8.4), we can collect terms and write the slope as

g(x, X) = X3 + (x + 3)X2 + (x2 + 3x − 96)X

+ x3 + 3x2 − 96x − 388.

Let X = [0, 4] and x = 2. Evaluating g(x, X) using Horner’s rule, we
obtain g(x, X) = [−904, −560]. If we use (7.8.4) to compute the slope,
we are not able to collect terms; and we obtain g(x, X) = [−1043, −271].
this result is wider than the previous one by a factor of approximately 2.2.

Suppose that a given function f (x) is not convex or concave over an
interval X. But, suppose we can subdivide X into two subintervals X1 and
X2 such that X = X1 ∪ X2 and f (x) is convex for x ∈ X1 and concave for
x ∈ X2. The slope of f (x) over X is

g(x, X) = g(x, X1) ∪ g(x, X2).

The intervals g(x, X1) and g(x, X2) can be determined using monotonicity
as described above. Therefore, we can determine g(x, X). Note that x is
arbitrary; but the same value must be used in computing both g(x, X1) and
g(x, X2).

This approach can be generalized by subdividing X into more than two
subintervals. This allows us to determine the slope of functions such as
sin(x).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Suppose we want the slope of a function over an interval X and it
contains a transcendental subfunction u(x) and we do not know its slope
gu(x, X). We can replace gu(x, X) by a derivative that bounds the slope.
However, the argument of the derivative must be chosen correctly. Recall
that for a slope, the fixed point x need not be in X. The argument of the
derivative that bounds the slope must contain both x and X. Let X′ be the
smallest interval containing x and X.Then gu(x, X) ⊂ d

dx
u(X′). Therefore,

when computing the slope of the original function, we can replace the slope
of u(x) by d

dx
u(X′).

To illustrate the computation of the slope of an irrational composite
function, let us find the slope of f (x) = exp(x2 + x) over an interval X.
Define u(x) = x2 + x and v(u) = eu. To obtain the slope of u(x), we
divide u(y) − u(x) by y − x and get x + y + 1. Thus

gu(x, X) = x + X + 1. (7.8.5)

The exponential function is convex. Therefore, from (7.8.1),

gv[u(x), u(X)] = eu(X) − eu(x)

u(X) − u(x)
=
[
eu − eu(x)

u − u(x)
,
eu − eu(x)

u − u(x)

]

(7.8.6)

where u and u are the endpoints of u(X). That is, u(X) = [u, u].
For a general function u, we might not be able to determine u and u

sharply. However, we can compute bounds on u(X) by simply evaluating
u over X. The result might not be sharp because of dependence. Therefore,
the bounds on the slope of f might not be sharp. If u is monotonic over X,

this fact can be used to compute u(X) sharply. See Section 3.6. Since we
use the slope of u to obtain an expression for the slope of f , we can also
bound u(X) using the slope expansion

u(X) ⊂ u(x) + gu(x, X)(X − x).

In our case, we can write u(X) = (X + 1
2)2 − 1

4 and compute u(X)

sharply because X occurs only once in this expression for u(X). (See Sec-
tion 2.4.)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

From (7.7.5b), the slope of f is

gf (x, X) = gv[u(x), u(X)]gu(x, X).

Therefore, (7.8.3) or (7.8.4) yield the desired slope of f.

7.9 MULTIDIMENSIONAL SLOPES

Multidimensional slopes can be obtained using the sequential expansion
procedure for derivatives discussed in Section 7.3. See Equations (7.3.2)
through (7.3.5). Consider the three dimensional case. If we regard
f (y1, y2, y3) as a function of y3, then

f (y1, y2, y3) = f (y1, y2, x3) + (y3 − x3)g3(y1; y2; x3,y3)

where

g3(y1; y2; x3,y3) = f (y1, y2, y3) − f (y1, y2, x3)

y3 − x3
.

We now expand f (y1, y2, x3) as a function of y2 and obtain

f (y1, y2, x3) = f (y1, x2, x3) + (y2 − x2)g2(y1; x2, y2; x3)

where

g2(y1; x2, y2; x3) = f (y1, y2, x3) − f (y1, x2, x3)

y2 − x2
.

Finally, we expand f (y1, x2, x3) as a function of x1 and obtain

f (y1, x2, x3) = f (x1, x2, x3) + (y1 − x1)g1(x1, y1; x2; x3)

where

g1(x1, y1; x2; x3) = f (y1, x2, x3) − f (x1, x2, x3)

y1 − x1
.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Combining these results, we obtain

f (y1, y2, y3) =f (x1, x2, x3)

+ (y1 − x1)g1(x1, y1; x2; x3)

+ (y2 − x2)g2(y1; x2, y2; x3)

+ (y3 − x3)g3(y1; y2; x3,y3). (7.9.1)

Each of the functions g1, g2, and g3 are obtained using one-dimensional
expansions and hence can be computed or bounded as discussed above.

The form of the expansion depends on the order in which the sequential
expansion is done. Since (7.9.1) is an identity, any sequence produces
an analytically equivalent (and therefore cset-equivalent) form. However,
different forms can produce different numerical results because of differing
effects from dependence.

In Section 7.3, we discuss two procedures for obtaining the Taylor
expansion of the product of two or more multidimensional function. In one
procedure, the expansion is done directly (see (7.3.10)). In the other, it is
obtained as the product of the expansions of the individual functions (see
(7.3.11)). This discussion applies equally well for slope expansions. For
the same reasons given in Section 7.3, we prefer to use a product of slope
expansions rather than a slope expansion of products.

Similarly, the slope expansion of a quotient of multidimensional func-
tions is obtained as the quotient of slope expansions. Compare the above
with (7.3.12).

Consider a vector function f(x). If we expand each component of f in
a form such as (7.9.1), we can combine the results in matrix form as

f(y) − f(x) = G(x, y)(y − x)

where G(x, y) is the appropriate matrix. That is, we can generate a slope
expansion of a vector function.

Note that G(x, y) takes the place of the Jacobian in a Taylor expansion.
In Section 7.4, we discussed how to make the Jacobian symmetric when f
is the gradient of some function. Unfortunately, the slope expansion does
not seem to provide a means for making G(x, y) symmetric.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Anticipating our discussion of solving systems of nonlinear equations
in Chapter 11, we note the following. If y is a zero of f in a box xI, then
f(y) = 0 and we can seek a solution y of f(y) = 0 by solving

G(x, xI)(y − x) = −f(x).

See Chapter 11 for further discussion.

7.10 HIGHER ORDER SLOPES

We now consider how to obtain higher order slopes comparable to higher
order derivatives. We consider the one-dimensional case. As we have seen,
the first order expansion of f is

f (y) = f (x) + (y − x)g(x, y).

To obtain a second order expansion, we can expand g(x, y) to first order.
Thus, we want an expansion of the form

g(x, y) = g(x, x) + (y − x)h(x, y).

The slope g(x, y) is defined to be f (y)−f (x)

y−x
. Therefore,

g(x, x) = lim
y→x

f (y) − f (x)

y − x
= f ′(x).

Therefore, the second order expansion is of the form

f (y) = f (x) + (y − x)f ′(x) + (y − x)2h(x, y).

That is, the slope g(x,y)−g(x,x)

y−x
of g becomes

h(x, y) = f (y) − f (x) − (y − x)f ′(x)

(y − x)2
.

For a rational function f , the numerator can be explicitly divided by the
denominator. For example, if f (x) = x4, then h(x, y) = 3x2 + 2xy + y2.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

If g(x, X) is composed of functions for which we can compute the slopes,
then we can compute the second order slope h(x, X). If g(x, X) is convex
or concave, we can compute h(x, X) as described in Section 7.8.

Note that slopes of arbitrarily high order can be obtained iteratively. If
we have an expansion of order n, we need only expand the highest order
term to first order to obtain an expansion of order n + 1. This is how we
obtained the second order expansion from the first order expansion.

7.11 SLOPE EXPANSIONS OF NONSMOOTH FUNCTIONS

In theory, slope bounds can be determined for any function f . What is

needed is a bound on the difference quotient f (y)−f (x)

y−x
for arbitrary but

fixed x and all y in an arbitrary interval X. Such bounds can be obtained
for certain nonsmooth functions.

In Section 18.1, we show that the absolute value of a function and the
max of two functions can be replaced by smooth functions plus constraints.
An alternative exists in which a slope expansion is used for these functions.
Kearfott (1996) provides the slopes of these functions and also for the so-
called if-then-else function defined below. See also Ratz (1998), (1999).

Consider the absolute value function
f (x) = |x|.

We can determine the slope of this function for an interval X by separately
considering positive and negative values in X. We obtain

g(x, X) =






[1, 1] if x ≥ 0 and X ≥ 0,

[−1, −1] if x ≤ 0 and X ≤ 0,
[|X|−x

X−x
, 1
]

if x ≥ 0 and 0 ∈ X,
[
−1,

|X|−|x|
X−x

]
if x ≤ 0 and 0 ∈ X.

Next consider the function

f (x) = max{u(x), v(x)}.
For this function, we merely bound the slope. If u(x) ≥ v(x) for all x in an
interval X, then f (x) = u(x) for x ∈ X; and the slope of f over X is the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

slope gu(x, X) of u. Similarly, if u(x) ≤ v(x) for all x ∈ X, the slope of
f over X is the slope gv(x, X) of v. Otherwise, the slope of f for a given
point in X must be either the slope of u or of v for the point. Therefore, the
slope for the point is in the union of the slope of u and of v.

That is, the slope of f is contained in

g(x, X) =





gu(x, X) if u(x) ≥ v(x) for all x ∈ X,

gv(x, X) if u(x) ≤ v(x) for all x ∈ X,

gu(x, X) ∪ gv(x, X), otherwise.

The if-then-else function is defined to be

ite(u, v, z) =
{

u if z < 0,

v otherwise.

Its slope can be bounded in a way similar to that for the maximum function.
We obtain

g(x, X) =





gu(x, X) if z < 0,

gv(x, X) if z ≥ 0,

gu(x, X) ∪ gv(x, X), otherwise.

7.12 AUTOMATIC EVALUATION OF SLOPES

To evaluate a rational function on a computer, we program a sequence
of steps involving the four arithmetic operations of addition, subtraction,
multiplication, and division. Krawczyk and Neumaier (1985) point out
that we can automatically obtain the slope of the function in the same way
automatic differentiation obtains the derivative of a functions. See Section
7.5.

If

fi(y) = fi(x) + gi(x, y)(y − x) (7.12.1)

for i = 1 and 2, then

f1(y) ± f2(y) = f1(x) ± f2(x) + [g1(x, y) ± g2(x, y)](y − x).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Hence, if f = f1 ± f2, then

f (y) = f (x) + g(x, y)(y − x)

provided

g(x, y) = g1(x, y) ± g2(x, y). (7.12.2)

For multiplication, we have

f (y) = f1(y)f2(y)

= [f1(x) + g1(x, y)(y − x)]f2(y)

= f1(x)[f2(x) + g2(x, y)(y − x)] + g1(x, y)f2(y)(y − x).

Hence,

g(x, y) = f1(x)g2(x, y) + g1(x, y)f2(y). (7.12.3)

Note that one of the functions f1 and f2 has argument x and the other has
argument y. If we interchange the roles of f1 and f2, we obtain g (x, y)

in a different form. Analytically, the two forms are interchangeable, be-
cause they are containment-set equivalent (see Chapter 4) algebraic rear-
rangements of one another. Nevertheless, the effect of dependence on the
computed values might be different for the two cases; so different results
might be produced.

The slope of the quotient of two functions is unique and is given in Table
7.2. Note that the table includes the slopes of the primitives f = constant
and f = x which are necessary for starting the procedure for automatic
evaluation of slopes.

Ideally, we want merely to program the evaluation of a function and
have code generated automatically to evaluate its slope. When a slope
cannot be determined, such a program can produce a bound for the slope.
Such a bound can be in the form of a derivative. The approach is the same
as for automatic differentiation as described in Section 7.5. It automatically
yields numerical values of the slope.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

f (x) g(x, y)

constant 0
x 1

f1(x) ± f2(x) g1(x, y) ± g2(x, y)

f1(x)f2(x) f1(y)g2(x, y) + f2(x)g1(x, y)

f1(x)

f2(x)

f2(x)g1(x,y)−f1(y)g2(x,y)

f2(x)f2(y)

Table 7.2: Slopes for the Basic Arithmetic Operations on Two Functions.

In the multivariable case, special procedures are used to generate the
expansion of the product and quotient of functions. See Sections 7.3 and
7.5 for discussion of expansions using derivatives.

Alternatively, the slope can be generated in a way similar to symbolic
differentiation (see Section 7.5) using algebraic manipulation by a program
such as MACSYMA, Maple, Mathematica, or REDUCE. It is then possible
to express the slope function analytically to produce sharper numerical
results by reducing dependence (see Section 2.4). Identification and use of
common subexpressions should be included.

A simple example shows how such an analytic approach can yield
sharper results than the automatic procedure. Consider the function f (x) =
x2 −x3 with X = [0, 1] and x = 0.5. The automatic procedure using Table
7.2 produces numerical values as if the slope is computed using

g(x, y) = (x + y) − (x2 + xy + y2) (7.12.4)

with y replaced by X. This results in g(x, X) = [−1.25, 1.25].
Suppose we obtain g(x, y) explicitly in the algebraic form given by

(7.12.4). We can rewrite g(x, y) as

g(x, y) = 1 − 3x2

4
−
(

y − x − 1

2

)2

.

Evaluating g using this form, we produce the much better result g(x, X) =
[−0.5, 0.0625]. It can be shown that this is the best possible result. That
is, it is the range of g(x, y) for y ∈ X (when x = 0.5).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Krawczyk and Neumaier point out that the computational effort to com-
pute a slope of a function f using the rules in Table 7.2 increases only
linearly with the number of computational steps needed to evaluate f . For
rational functions, the computational complexity is essentially the same as
that for computing a gradient using automatic differentiation as discussed
in Section 7.5.

Suppose that a given function is defined in terms of subfunctions and
that slopes can be determined for some of the subfunctions but can only
be bounded for others. We can expand such a function using slopes when
possible and using derivatives otherwise. See Zuhe and Wolfe (1990).

Suppose we wish to obtain an expansion using a method such as the
automatic procedure described earlier in this section or by an analytic pro-
cedure. We begin as if we are able to obtain a slope expansion. Suppose
that at some stage, we require the slope of some subfunction f (x) over
an interval X, but it cannot be determined. Assuming f is continuously
differentiable for all x ∈ X, then

g(x, y) = f (y) − f (x)

y − x
∈ f ′(X)

for x ∈ X and y ∈ X. Therefore, we can replace the slope g(x, X) by the
derivative f ′(X) which bounds it.

When we generate a slope expansion over an interval X, the point of
expansion x need not be in X. If we want to replace g(x, X) by a derivative,
the derivative must be evaluated over an interval containing both x and X.

The algorithms described in this book use expansions of first or second
order only. We have noted that second order expansions can be obtained
by generating a first order expansion of the slope. However, second order
expansions can be generated directly using a similar automatic procedure.

To do so, we need expansions for a sum, difference, product and quo-
tient. Let h(x, y) denote the second order slope; i.e., the slope of the slope.
Let

fi(y) = fi(x) + (y − x)f ′
i (x) + (y − x)2hi(x, y) (i = 1, 2)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

For addition or subtraction,

f (y) = f1(y) ± f2(y)

= f1(x) ± f2(x) + (y − x)
[
f ′

1(x) ± f ′
2(x)

]

+ (y − x)2 [h1(x, y) ± h2(x, y)] .

For multiplication,

f (y) = f1(y)f2(y)

= f1(x)f2(x) + (y − x)
[
f1(y)f ′

2(x) + f ′
1(x)f2(x)

]

+ (y − x)2
[
f ′

1(y)h2(x, y) + f2(x)h1(x, y)
]
.

For division,

f (y) =f1(y)

f2(y)

=f1(x)

f2(x)
+ (y − x)

f ′
1(x)f2(x) − f1(x)f ′

2(x)

f2(x)f2(y)

+ (y − x)2 f2(x)h1(x, y) − f1(x)h2(x, y)

f2(x)f2(y)
.

7.13 EQUIVALENT EXPANSIONS

A salient feature of a slope expansion is that its analytic form for a ratio-
nal function is exact. Intervals enter only when terms are bounded. In
contrast, intervals enter into a Taylor expansion to bound unknown deriva-
tive values. There are other types of expansions which are equivalent to
slope expansions (and to each other) because they also use exact analytic
expansions and then bound certain terms. The oldest of these is Moore’s
(1966) centered form (see Section 3.3) which generalizes in various ways
(see Ratschek and Rokne (1984)).

Another equivalent type of expansion is the generalized interval arith-
metic introduced by Hansen (1975). It has been used to speed the process
of solving nonlinear equations by interval methods. See Hansen (1993).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Curiously, perhaps, these older methods did not become popular as
methods of expansion and slope expansions have become more widely
used. For this reason, we have discussed slopes rather than other forms.
Centered forms are not as easily automated and this probably explains
their limited use. However, generalized interval arithmetic is as convenient
to use as slopes. Generalized interval arithmetic is very similar to slope
expansions. Addition, subtraction and division are identically the same.
Multiplication differs only in that second order terms are incorporated into
the zero-th order term in generalized interval arithmetic and into the linear
term in slope expansions.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 8

QUADRATIC EQUATIONS
AND INEQUALITIES

8.1 INTRODUCTION

When solving systems of nonlinear equations and optimization problems,
we frequently want to compute the real roots of a quadratic equation in
which the coefficients are intervals. These roots might be finite intervals,
semi-infinite intervals, or the entire real line. A naive procedure for de-
termining the roots can be surprisingly complicated. In this chapter, we
describe a procedure due to Hansen and Walster (2001) for computing such
roots. We also discuss solving quadratic inequalities. These procedures are
useful elsewhere in this book.

Consider the quadratic equation

Ax2 + Bx + C = 0 (8.1.1)

where A = [A, A], B = [B, B], and C = [C, C] are intervals. The
interval roots of (8.1.1) are the set of real roots x of the quadratic equation
ax2 + bx + c = 0 for all real a ∈ A, b ∈ B, and c ∈ C.

We can express an interval enclosure for the roots as

r± ∈ −B ± (B2 − 4AC)1/2

2A
. (8.1.2)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

This interval enclosure is not sharp except in special cases described below.
This is because the intervals A and B occur more than once in this expres-
sion and dependence causes loss of sharpness. It does not help to use the
algebraically equivalent enclosure:

r± ∈ 2C

−B ± (B2 − 4AC)1/2

because B and C now occur twice.
Since x2 ≥ 0,Ax2 = [Ax2, Ax2].The term Bx in (8.1.1) can be written

Bx =
{ [Bx, Bx] if x ≥ 0,

[Bx, Bx] if x ≤ 0.

Denote

F1(x) = Ax2 + Bx + C,

F2(x) = Ax2 + Bx + C,

F3(x) = Ax2 + Bx + C,

and

F4(x) = Ax2 + Bx + C.

We can rewrite (8.1.1) as [F1(x), F2(x)] = 0 when x ≥ 0 and as [F3(x),
F4(x)] = 0 when x ≤ 0. Denote

F(x) =
{

F1(x) if x ≥ 0,

F3(x) if x ≤ 0.
F (x) =

{
F2(x) if x ≥ 0,

F4(x) if x ≤ 0.
(8.1.3)

Then the quadratic function

F(x) = Ax2 + Bx + C

can be expressed as

F(x) = [F(x), F (x)].

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Suppose there exists a value of x such that

F(x) ≤ 0 ≤ F(x). (8.1.4)

Then there exists a ∈ A, b ∈ B, and c ∈ C such that ax2 + bx + c = 0 for
this value of x. Given such a point x, let R be the largest interval containing
x such that every point in R also satisfies (8.1.4). We call R an “interval
root” of F(x).

In the noninterval case, there might be no real root, or there might be
only one (multiple root), or there might be two disjoint roots. The same is
true for the interval case. However, the interval case differs from the non-
interval case in that there might be three disjoint interval roots. In the latter
case, one interval root extends to −∞ and another extends to +∞. That is,
it is really an exterior interval. We can think of an exterior interval root as
two interval roots joined at projective infinity to form a single interval.

We can simplify the process of determining the interval roots by assum-
ing that A > 0. If this is not the case, we need only change the sign of F(x).

This can fail only if A = 0 in which case the equation is not quadratic.
A natural way to determine the interval roots is to find the set of points

where F(x) ≥ 0 and the set of points where F(x) ≤ 0 and take the
intersection of these two sets.

This is surprisingly tedious. We must separately consider the cases B >

0, B < 0, and B < 0 > B and (independently) consider the cases C > 0,

C < 0 < C, and C < 0. Also we must consider the cases A < 0, A = 0,
and A > 0. There are 27 cases in all. For each possible combination of
these possibilities, there are multiple sub-cases to consider. Determining
an interval root in this way requires comparing the values of F(x) and

F(x) at their extrema with their values at x = 0 and determining the shape
and orientation of F(x) and F(x). For the case A < 0 and B < 0 < B,

there are 11 sub-cases to consider. For other cases, there are 6 sub-cases.
In our optimization algorithms, we sometimes want to find the solution

set of the quadratic inequality

Ax2 + Bx + C ≥ 0 (8.1.5)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We can solve this relation by rewriting it as the equation

Ax2 + Bx + C = [0, +∞]

so that it becomes

Ax2 + Bx + [−∞, C] = 0.

This has the form of (8.1.1) and can be solved by the method that we now
describe.

8.2 A PROCEDURE

We wish to know where the lower and upper real functions defining F(x)

are zero. These functions are determined by Fi(x) (i = 1, 2, 3, 4). It is
easily verified that the upper function F(x) is convex. If A > 0, then the
lower function F(x) is also convex. If A < 0, the lower function F(x) is
concave for x ≤ 0 and for x ≥ 0, but it can have a cusp at x = 0.

Let us compute the real roots of each of these real functions Fi(x)

(i = 1, 2, 3, 4) and place them in a list L. A double root is to be entered
twice. If A = 0, then F1 and F3 are linear and we have only a single root.
The roots are computed using interval arithmetic to bound rounding errors.
Thus, the entries in the list L are intervals.

Since we omit complex roots, it appears that these four functions can
have a total of 0 to 8 roots. However, these real roots are endpoints of the
interval roots and there can be no more than three interval roots. Therefore,
the list L can contain no more than six real roots.

The functions F1(x) and F2(x) define bounds on F(x) only when x ≥ 0.

Therefore, we drop any negative root of these functions from the list L.Also,
drop any negative part of the interval bounding such a root. Similarly, drop
any root (or part of root) of F3(x) or F4(x) that is positive.

The intervals remaining in L bound values of x that are either a lower
or an upper endpoint of an interval root. We need only determine which
they are. Before doing so, it is convenient to put the interval root endpoints
±∞ into L (if they occur).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We have assumed that A > 0. Therefore, F > 0 for all sufficiently
large |x|. If A > 0, then F(x) > 0 for all sufficiently large |x|. Therefore,
there is no interval root for “large” |x|. That is, if any root exists, it must be
finite.

However, if A < 0, then F(x) < 0 for all sufficiently large |x|. There-
fore, an interval root exists whose lower endpoint is −∞ and an interval
root exists whose upper endpoint is +∞.

Similar arguments show that there exists an interval root whose left
endpoint is −∞ if A = 0 and B > 0 or if A = 0 and B = 0 and C ≤ 0.

Therefore, we put a value −∞ into the list L if A < 0 or if A = 0 and

B > 0 or if A = 0 and B = 0 and C ≤ 0. Similarly, we put a value +∞
into L if A < 0 or if A = 0 and B > 0 or if A = 0, B = 0, and C ≤ 0.

If L is empty, there are no interval roots. Otherwise, we name the entries
in L as Si = [Si, Si] where we have ordered them so that Si ≤ Si+1. Let
si denote the exact root that is bounded by Si .

We want the computed interval roots to contain the exact interval roots.
To assure this, we replace si by Si if si is the lower endpoint of an interval

root and by Si if si is an upper endpoint.

A particular case requires attention. If C = 0, then F1(x) and F3(x)

are both zero at x = 0. However, this particular zero of F(x) must be listed

only once in L. Similarly, if C = 0, the zero at x = 0 of F(x) must be
listed only once.

In the next section, we list the steps to implement our procedure for
computing the interval roots. Before doing so, we note that there are certain
cases in which the roots can be computed more simply.

In some cases, the roots are monotonic functions of the coefficients and
hence are easily computed. This is true if AC ≤ 0. It is also true if AC ≥ 0
provided either B ≤ 0 or B ≥ 0.

There are two cases in which we can compute an interval root by di-
rectly using an interval version of equation (8.1.2). It can be shown using
the endpoint analysis of Section 3.5 that the interval roots can be sharply

computed as −B+(B2−4AC)1/2

2A
and 2C

−B+(B2−4AC)1/2 if A ≥ 0, B ≤ 0, C ≥ 0,

and B2 − 4AC ≥ 0. That is, dependency does not cause loss of sharpness.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

They can be correctly computed as −B−(B2−4AC)1/2

2A
and 2C

−B−(B2−4AC)1/2 if

A ≥ 0, B ≥ 0, C ≥ 0, and B2 − 4AC ≥ 0. In each of these two cases, the
roots can also be determined using monotonicity.

Roots for other special cases can be easily obtained. This is the case if
B = 0 or if C = 0.

Incidentally, the roots of a real quadratic ax2 + bx + c = 0 are best
computed as [−b − (b2 − 4ac)1/2]/(2a) and 2c/[−b − (b2 − 4ac)1/2] if
b > 0 and as [−b + (b2 − 4ac)1/2]/(2a) and 2c/[−b + (b2 − 4ac)1/2] if
b < 0. This well known procedure minimizes the effect of rounding errors.
This procedure is also used in computing the real roots of the quadratic
equations Fi(x) = 0 (i = 1, 2, 3, 4) defined above.

Our method for computing roots of interval quadratics can also be ex-
tended to compute the real interval roots of a polynomial of any degree with
interval coefficients.

It is a simple process to determine the range of an interval quadratic
equation over an interval X. The real functions F(x) and F(x) are the
lower and upper functions of the interval quadratic. The lower bound of
F(x) and the upper bound of F(x) over X are easily found. These bounds
define the range of the interval quadratic over X.

8.3 THE STEPS OF THE ALGORITHM

Our procedure for computing interval roots can be implemented in various
ways. We have chosen the following steps.

1. Compute intervals containing the real roots of each of the real func-
tions Fi(x) (i = 1, 2, 3, 4). Put the results in a list L. A double root
is to be entered twice. If C = 0, both F1(x) and F3(x) have a root at

x = 0. This root is entered only once into L. If C = 0, both F2(x)

and F4(x) have a zero at x = 0. This root is entered only once into
L.

2. Put a value −∞ into the list L if A < 0 or if A = 0 and B > 0 or if

A = 0 and B = 0 and C ≤ 0.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

3. Put a value +∞ into the list L if A < 0 or if A = 0 and B > 0 or if
A = 0, B = 0, and C ≤ 0.

4. Order the (interval) entries in L so that if they are named Si , then
Si ≤ Si+1. Note that entries ±∞ can be regarded as degenerate
intervals.

5. Denote the number of entries in L by n. If n = 0, there are no interval
roots. If n = 2, there is one interval root [S1, S2]. (Note that it might

be [−∞, +∞].) If n = 4, there are two interval roots [S1, S2] and

[S3, S4]. If n = 6, the interval roots are [−∞, S2], [S3, S4], and
[S5, +∞].

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 9

NONLINEAR EQUATIONS
OF ONE VARIABLE

9.1 INTRODUCTION

Consider a continuously differentiable scalar function f of a single variable
x. In this chapter, we consider the problem of finding and bounding all the
zeros of f (x) = 0 in a given finite, closed interval X0. The only methods
we consider are the interval Newton method and the variation of it in which
derivatives are replaced by slopes.

Various other interval methods for this problem have been published
including more general versions of the method we describe. However, the
simple version of the interval Newton method has so many remarkable
properties (see Section 9.6) and is so efficient that no other methods or
variations are needed.

The quotation below points up the value of some of the properties of the
method. Section 2.1 of the excellent book by Dennis and Schnabel (1983)
is entitled “What is not possible”. As we shall see, properties of the interval
Newton method make this title erroneous.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Dennis and Schnabel define the functions

f1(x) = x4 − 12x3 + 47x2 − 60x

f2(x) = f1(x) + 24

f3(x) = f1(x) + 24.1.

They state that “It would be wonderful if we had a general purpose computer
routine that would tell us: ‘The roots of f1(x) are 0, 3, 4, and 5; the real
roots of f2(x) are x = 1 and x ∼= 0.888; f3(x) has no real roots’ ”.

They continue: “It is unlikely that there will ever be such a routine. In
general the questions of existence and uniqueness — does a given problem
have a solution, and is it unique? — are beyond the capabilities one can
expect of algorithms that solve nonlinear problems”.

As described in this chapter, the general purpose computer routine that
Dennis and Schnabel say “would be wonderful” does, in fact, exist. It was
used by one of the authors to solve the problems listed. It produced precisely
the information requested in the above quotation, including answers to the
questions of existence and uniqueness.

We derive this “wonderful” algorithm in the next section and give a
version of it in Section 9.3. We now list some of its properties in informal
terms. The properties are proved formally as theorems in Section 9.6

1. Every zero of f in an initial interval X0 is always found and correctly
bounded. See Theorems 9.6.2, 9.6.3, and 9.6.5 below. Noninterval
methods sometimes use explicit or implicit deflation to find all zeros
of a function. No special deflation steps are required in the interval
algorithm. The loss of accuracy due to explicit deflation has no
counterpart here.

2. If there is no zero of f in X0, the algorithm automatically proves this
fact in a finite number of iterations. See Theorems 9.6.4 and 9.6.5.

3. The existence or nonexistence of a zero of f in a given interval might
(but might not) be automatically proved without extra computing.
See Theorems 9.6.4 and 9.6.8.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

4. Assume the interval Newton method is applied to an interval X. If 0 /∈
f ′(X), at least half of X is eliminated in one step. Thus, convergence
can be reasonably rapid even when w(X) is large. See Theorem 9.6.6.

5. If 0 /∈ f ′(X). then, if the interval Newton method is applied itera-
tively beginning with X, the asymptotic rate of convergence to a zero
of f in X is quadratic. See Theorem 9.6.7.

After discussing stopping criteria in Section 9.4, we list the steps of the
algorithm in Section 9.5. We then state and prove several theorems about
the properties of the algorithm in Section 9.6 and give a numerical example
in Section 9.7. In Section 9.8, we describe a variant of the method using the
slope function (discussed in Section 7.7). An illustrative example of this
variant is given in Section 9.9. We close the chapter with a brief discussion
of perturbed problems in Section 9.10.

9.2 THE INTERVAL NEWTON METHOD

The interval Newton method was derived by Moore (1966) in the following
manner. From the mean value theorem

f (x) − f (x∗) = (x − x∗)f ′(ξ) (9.2.1)

where ξ is some point between x and x∗. If x∗ is a zero of f , then f (x∗) = 0
and, from (9.2.1),

x∗ = x − f (x)

f ′(ξ)
.

Let X be an interval containing both x and x∗. Since ξ is between x and x∗,
it follows that ξ ∈ X. Therefore, f ′(ξ) ∈ f ′(X) by Theorem 3.2.2. Hence,
x∗ ∈ N(x, X) where

N(x, X) = x − f I(x)

f ′(X)
,

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

and we usef I(x) to denote the interval evaluation off (x) to bound rounding
errors. Temporarily assume 0 /∈ f ′(X) so that N(x, X) is a finite interval.
Since any zero of f in X is also in N(x, X), it is in the intersection X ∩
N(x, X).

Using this fact, we define an algorithm for finding the zero x∗. Let X0

be an interval containing x∗. For n = 0, 1, 2, · · · , define

xn = m(Xn)

N(xn, Xn) = xn − f I(xn)

f ′(Xn)
(9.2.2)

Xn+1 = Xn ∩ N(xn, Xn)

We call xn the point of expansion for the Newton method. It is not necessary
to choose xn to be the midpoint of Xn. We require only that xn ∈ Xn to
assure that x∗ ∈ N(xn, Xn) whenever x∗ ∈ Xn. However, it is convenient
and efficient to choose xn = m(Xn). Later in this section, we discuss a
useful result of this choice. In Section 9.3, we discuss a case in which the
point of xn is an endpoint of Xn.

In his original derivation of the interval Newton method, Moore (1966)
assumed that 0 /∈ f ′(X0). Alefeld (1968) and (independently, but much
later) Hansen (1978b) extended the algorithm to include the case 0 ∈
f ′(X0). We consider this more general case in this section.

If 0 /∈ f ′(X0) then 0 /∈ f ′(Xn) for all n = 1, 2, · · · . This follows
from inclusion isotonicity and the fact that Xn ⊂ X0 for all n = 1, 2,

However, if 0 ∈ f ′(X0), then evaluating N(x1, X1) requires the use of
extended interval arithmetic (see Chapter 4). If x∗ is a multiple zero of
f , then f ′(x∗) = 0 and so 0 ∈ f ′(X) for any interval X containing x∗.
Even though N(xn, Xn) is not finite in such a case, the intersection Xn+1 =
Xn ∩ N(xn, Xn) is finite.

When we evaluate f (xn), we use interval arithmetic to bound rounding
errors and denote this fact by a superscript “I” on f I(xn) = [an, bn]. If
0 ∈ f I(xn), then xn is a zero of f or else is “near” to one (if one exists).
If 0 ∈ f I(xn) and 0 /∈ f ′(Xn), a step of the interval Newton method using
the interval Xn might or might not yield a smaller interval than Xn.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Now consider the cases 0 /∈ f I(xn) and 0 ∈ f ′(Xn). Denote f ′(Xn) =
[cn, dn]. Using extended interval arithmetic, we obtain the following results.
Since 0 /∈ f I(xn) = [an, bn], either an > 0 or bn < 0. If an > 0, then

N(xn, Xn) =





[−∞, qn] ∪ {+∞} if cn = 0
[pn, +∞] ∪ {−∞} if dn = 0
[−∞, qn] ∪ [pn, +∞] if cn < 0 < dn

(9.2.3)

where

pn = xn − an

cn

qn = xn − an

dn

.

If bn < 0, then

N(xn, Xn) =





[q ′
n, +∞] ∪ {−∞} if cn = 0

[−∞, p′
n] ∪ {+∞} if dn = 0

[−∞, p′
n] ∪ [q ′

n, +∞] if cn < 0 < dn

(9.2.4)

where

p′
n = xn − bn

cn

q ′
n = xn − bn

dn

.

The intersection Xn+1 = Xn ∩N(xn, Xn) might be a single interval, the
union of two intervals, or the empty set. Figure 9.2.1 illustrates the case of
the union of two intervals. Points in Xn+1 are finite (or nonexistent if Xn+1

is empty). Therefore, we do not actually have to use unbounded intervals
in the Newton method.

One more case remains. Let X denote the interval to which a step of
the Newton method is applied. Let the point of expansion x be any point
in X. If both 0 ∈ f I(x) and 0 ∈ f ′(X), then N(x, X) = [−∞, +∞], a
useless result.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

][][

-1 5

x

20

f(x)

Gap

][X

f(x) = x 2 - 2

f I(m(X)) + f ′(X) (x - m(X))

f I(m(X)) + f ′(X) (x - m(X))

Figure 9.2.1: The Two-Interval Newton Iteration.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

This can occur when X is a narrow interval containing a multiple zero
x∗ of f because, in this case, f (x∗) = 0 and f ′(x∗) = 0. Therefore, f ′(X)

must contain zero; and x must be near x∗ so it is not unlikely that 0 ∈ f I(x).
But, it can happen that both 0 ∈ f I(x) and 0 ∈ f ′(X) when X is wide

and x accidentally is a zero or near a zero of f . A wide interval X is likely
to contain a stationary point of f, in which case 0 ∈ f ′(X). Since X is not
a good bound for the zero of f in this case, we must assure that we continue
to narrow it. We discuss a procedure for doing this in Section 9.4.

9.3 A PROCEDURE WHEN 0 /∈ f ′(X).

In a particular case, we can get what is essentially the sharpest possible
(for the number system used) bounds on a zero of a function without using
traditional stopping criteria. In this section, we discuss this special case and
a procedure for it. In Section 9.4, we discuss other criteria for terminating
an interval algorithm for finding and bounding zeros of a function.

Assume we seek a zero of f (x) in an interval X and that 0 /∈ f ′(X).

The relation 0 /∈ f ′(X) is the condition of interest in this section. It assures
that there is no more than one zero of f in X; and if there is a zero of f in
X, then it is a simple one. We use the fact that inclusion isotonicity assures
that 0 /∈ f ′(X′) for any interval X′ contained in X.

We now discuss a related topic. As previously noted, when we compute
f (x) using outwardly rounded arithmetic, we obtain an interval result that
we denote by f I(x). Let x∗ be a zero of f . Then 0 ∈ f I(x∗). Because of
rounding errors, it is generally true that 0 ∈ f I(x) for a set of values of x

near x∗. We define the interval X∗ to be the largest interval containing x∗
such that 0 ∈ f I(x) for every machine number x ∈ X∗. The function f

can depend on interval parameters. This can cause widening of X∗

We are satisfied if our algorithm produces an interval approximating X∗
as the final bound on x∗. Actually, we can often compute a better bound on
x∗ than X∗. This is because the Newton step uses information about both
f and f ′ rather than just f . However, we discuss termination as if X∗ is
the desired bound on x∗. We refer to X∗ as the “optimal bound” on x∗.

We now return to our discussion of the special case in which 0 /∈ f ′(X).

Assume this is the case and that we seek a zero of f in an interval X.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Suppose we apply an interval Newton method that is derived (as in Section
9.2) by expanding about the midpoint x = m(X) of X. We compute

N(x, X) = x − f I(x)

f ′(X)
and we then determine a new bound X ∩ N(x, X) on

the zero.

We write f I(x) in place of f (x) to emphasize that N(x, X) now denotes
the computed value of the theoretical function rather than the function itself.
It is common practice to omit such notation.

From Theorem 9.6.6 below, if 0 /∈ f I(x), then w(X′) ≤ 1
2 w(X). That

is, convergence is adequately rapid as long as 0 /∈ f I(x). Therefore, we
iterate the Newton step. Asymptotically, convergence will be quadratic.
See Theorem 9.6.7. Eventually, either a result is empty or else 0 ∈ f I(x)

for the current point x.
Assume that 0 ∈ f I(x). Then it is likely that x is in the optimal bound

X∗ for a zero x∗ of f . We wish either to compute an approximation for X∗
or else to prove that there is no zero of f in X.

Denote the point x for which we first satisfy the condition 0 ∈ f I(x) by
x̃. Suppose we have performed the Newton step when 0 ∈ f I(̃x). Assume
(as is generally the case) that we have used a Newton method that is defined
using an expansion about the center of the current interval. We now change
to the following procedure in which a Newton step is sometimes computed
by expanding f about an endpoint of the current interval and sometimes
about its center. We denote the current interval by X = [a, b] even though
it changes in various steps of the procedure. The point x̃ does not change.

We expand about the endpoint x = a only if 0 /∈ f I(a) We set a flag
Fa when 0 ∈ f I(a). Similarly, we set a flag Fb when 0 ∈ f I(b). We begin
with flag Fa = 0 and flag Fb = 0.

We cycle through the procedure no more than four times. The integer
n counts the cycles.

0. Set n = 0.

1. If flag Fa = 1 go to step 4.

2. Evaluate f (a). If 0 ∈ f I(a), set flag Fa = 1 and go to step 4.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

3. Apply a Newton step in which the point of expansion is a. If the
result is empty, stop.

4. If flag Fb = 1, go to step 7.

5. Evaluate f (b). If 0 ∈ f I(b), set flag Fb = 1 and go to step 7.

6. Apply a Newton step. If x̃ ∈ X, then use b as the point of expansion.
Otherwise, expand about the midpoint m (X) . If the result is empty,
stop.

7. If flag Fa = 1 and flag Fb = 1, stop.

8. Apply a Newton step in which the point of expansion is m (X) . If
the result is empty, stop.

9. Replace n by n + 1.

10. If n < 4, go to step 1. Otherwise, stop.

The procedure might stop when n < 4. Instead of stopping when n = 4,

we can continue iterating until no further reduction of the interval occurs.
However, this might entail an excessive number of iterations with little
reduction in the width of the interval bounding the zero.

This procedure stops when the evaluation of f at each endpoint pro-
duces an interval containing zero. It also stops if a Newton step results in an
empty interval. The final interval can be narrower than the optimal bound
X∗.

This procedure begins only after a Newton step has been applied in
which the point of expansion is a point x̃ such that 0 ∈ f I(̃x) and 0 ∈
f ′(X). When this is true, the result of this Newton step is generally a
narrow interval. Therefore, the procedure can stop in one or two iterations.
However, suppose an endpoint of f ′(X) is near zero for the interval X used
when the procedure begins. Then more iterations might be required.

The point x̃ is defined when x̃ = m(X), 0 ∈ f (̃x), and 0 /∈ f ′(X). The
Newton step when this is the case will usually prove existence of a simple
zero of f in X. See Theorem 9.6.8 below. This zero will be contained in
the final interval produced by the above steps. See Theorem 9.6.1 below.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Even if such proof is not obtained, it is very likely that the final interval
contains a zero. A possible but unlikely alternative is that there is a zero of
f in an interval abutting X but not in X itself. Such a zero is bounded by
the algorithm in Section 9.5.

Suppose 0 ∈ f ′(X) for some interval X. If we know that X contains
a single multiple zero of f , we can use the above procedure to compute
an optimal bound. However, if X contains two or more distinct zeros, the
procedure only returns an approximation for the smallest interval containing
all of them. We therefore do not use the procedure when 0 ∈ f ′(X).

9.4 STOPPING CRITERIA

Criteria for stopping iteration of an interval Newton method must assure that
iteration is continued until an interval bound on a zero of f is sufficiently
narrow. Also, the criteria should avoid needless iteration. We discuss these
issues in this section. Throughout this section, we assume 0 ∈ f ′(X) for
any interval X that is a candidate for a final bound on a zero of f . Otherwise,
we use the stopping procedure of Section 9.3.

A simple criterion is to terminate when the width w(X) of the current
interval X is small. However, this can create a difficulty. Consider a hypo-
thetical computer that uses three significant decimal digits in its arithmetic.
Suppose we require w(X) < 0.001 for any final interval. We consider two
examples using this criterion on such a computer.

Example 9.4.1 Suppose the solution is x∗ = 123.4 and we compute the
interval X = [123, 124] bounding it. In the number system used, there is
no narrower interval that bounds the solution. We have the best possible
result. However, the termination criterion w(X) < 0.001 is not satisfied
because w(X) = 1.

Example 9.4.2 Suppose the solution is x∗ = 0.000123 and we compute
the interval X = [−0.0004, 0.0004]. This interval satisfies the termination
criterion. However, we do not even know the sign of the solution bounded
by X.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The difficulty in Example 9.4.1 can be overcome by using a relative
rather than an absolute error criterion. That is, instead of requiring that
w(X) < ε for some ε > 0, we can require that w(X)

|X| < ε where |X| is the

magnitude of X as defined in Section 3.1.
Suppose 0 ∈ X. It is easily seen that in this case, |X| ≤ w(X) ≤ 2|X|

so w(X)

|X| ≥ 1. If our termination criterion is w(X)

|X| < ε with ε ≤ 1, then the

criterion can never be satisfied by any interval containing zero. Therefore,
when 0 ∈ X, the difficulty in Example 9.4.2 is not resolved by using a
relative criterion.

Suppose that 0 ∈ X. We can use the point x = 0 as the point of
expansion for a Newton step. When we evaluate f (0) using outwardly
rounded interval arithmetic, we obtain a result f I(0). If 0 /∈ f I(0), then the
point x = 0 is not in the Newton result N(0, X) and can no longer be in
the region of search. Therefore, we can rely upon the relative criterion for
subsequent Newton steps.

It is reasonable to expand about x = 0 when 0 ∈ X; but we do not
do so. It might very well happen that only a small interval about x = 0
is eliminated. In this case, the difficulty concerned with relative error still
occurs. If 0 /∈ f I(0), the point x = 0 is likely to be eliminated by the
Newton method without a special procedure. We consider the case 0 ∈
f I(0) later in this section.

We now consider the criteria we use to decide when to stop trying to
reduce an interval bound on a solution. We have already mentioned the
relative error criterion. We express it formally as follows.

Criterion 9.4.3 w(X)

|X| < εX for some given εX > 0.

It is reasonable to require that |f (x)| be small for every x in an interval
X accepted as a final bound on a solution. Therefore, we consider the
following criterion for termination.

Criterion 9.4.4 |f (X)| < εf for some given εf > 0.

Note that this criterion is in absolute rather than relative form because it is
used when 0 ∈ f (X).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

If both criteria are satisfied, we regard the interval X as an adequate
bound on a zero. If desired, a user can choose either εX or εf to be large
so stopping is caused by only one criterion.

Consider an interval X that contains a multiple zero of f . Then 0 ∈
f ′(X). Suppose 0 ∈ f I(x). To apply a Newton step, we must compute
f I(x)

f ′(X)
. Since zero is contained in both the numerator and denominator, the

computed quotient is [−∞, +∞]. Therefore, the Newton step does not
improve the bound X for the zero of f. If Criteria 9.4.3 and 9.4.4 are so
stringent that X is not accepted as a final bound, the Newton algorithm
splits the interval. This step could be repeated so that the optimal bound (as
defined in Section 9.3) for the zero is eventually covered by a large number
of subintervals. This would be wasted effort. Thus, we need a stopping
criterion that can override Criteria 9.4.3 and 9.4.4 when 0 ∈ f I(x) and
0 ∈ f ′(X).

On the other hand, X might be a wide interval and thus a poor bound
on a zero. We must assure that we do not override Criteria 9.4.3 and 9.4.4
in this case.

Let x ∈ X be the point of expansion for the Newton step. Suppose that
0 /∈ f I(x) Suppose, also, that either Criterion 9.4.3 or Criterion 9.4.4 (or
both) is not satisfied. Then we can say that the tolerances are not too small
because there is at least one point x in X where 0 /∈ f I(x). Therefore, we
require that 0 ∈ f I(x) before we override Criteria 9.4.3 and 9.4.4. Note
that it is possible that x = 0. This is the case we mentioned earlier in this
section when discussing relative error criteria.

Now suppose that both 0 ∈ f I(x) and 0 ∈ f ′(X). This can occur when
X is either wide or narrow. It can occur when X is narrow and contains
a multiple zero of f . If X is wide, it might contain a zero of f ′; and the
center x of X might accidentally be at or near a zero of f . In the latter
case, we wish to reduce the width of the bound X. In either case, we wish
to assure that the final bound on the zero approximates the optimal bound
defined in Section 9.3.

Assume we are applying the interval Newton method in Section 9.5.
Assume that when it is applied to a particular interval X = [a, b], we
find that 0 ∈ f I(x) and 0 ∈ f ′(X). In this case, we use the following
sub-procedure and then return to the main Newton algorithm.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The sub-procedure does one of three things. Steps 1 and 2 select a
point of expansion for the Newton step. Step 3 decides whether an interval
should be split. Step 4 decides when to accept an interval as a solution.

1. Evaluate f at the lower endpoint a of X. If 0 /∈ f I(a), select the
point x = a as the point of expansion for the Newton step; and return
to the main algorithm.

2. Evaluate f at the upper endpoint b of X. If 0 /∈ f I(b), select the
point x = b as the point of expansion for the Newton step: and return
to the main algorithm.

3. Denote x1 = 1
4 (3a + b) and x2 = 1

4 (a + 3b) . If 0 /∈ f I(x1) or
0 /∈ f I(x2), split X in half and record the information that the interval
X is to be split in half. Then return to the main algorithm. (Note that
x1 and x2 are the centers of the two halves of X.)

4. Accept X as a final bound on a zero of f ; and return to the main
algorithm.

Note that X is accepted as a final bound in step 4 only if the computed
(interval) value of f contains zero for each of the five equally spaced points
m(X), a, b, x1, and x2. It is possible that X is a wide interval and each of
these points is at or near a separate zero of f. However, we ignore this very
unlikely possibility. Examination of output should reveal this case.

Use of higher precision interval arithmetic can help resolve the uncer-
tainty when 0 ∈ f I(x) and 0 ∈ f ′(X). It is possible to always determine
the optimal bound for a zero as defined in Section 9.3. This can be done
using bisection in conjunction with the interval Newton method.

Our overall stopping criterion is now as follows: If 0 /∈ f ′(X), we
use the procedure in Section 9.3 which has its own method of stopping. If
0 ∈ f ′(X) and 0 ∈ f I(x), we use the above procedure when Criterion 9.4.3
or 9.4.4 is not satisfied.

If 0 /∈ f ′(X), the procedure in Section 9.3 always continues until a
suitable bound is obtained (or nonexistence of a zero of f in X is proved).
If 0 /∈ f I(x), a Newton step can always make progress because the point

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

x is not in the Newton result. If 0 ∈ f ′(X) and 0 ∈ f I(x), a Newton step
does not reduce X.

Note that we can set the tolerances εX and εf equal to zero. In this
case, a final condition before an interval is accepted as a final bound is that
0 ∈ f I(x). In this case, Criteria 9.4.3 and 9.4.4 cannot be satisfied. Earlier,
we mentioned the case in which x = 0 is a zero of f . Recall that Criterion
9.4.3 cannot be satisfied in this case if 0 ∈ X and εX < 1. This situation
can also occur if a zero of f occurs near x = 0. No difficulty occurs if one
or both criteria cannot be satisfied. Our algorithm in Section 9.5 assures
that, in this case, termination occurs using either the procedure in Section
9.3 or the above procedure in this section.

Earlier in this section, we noted the possible difficulties in using an
absolute error criterion for stopping an interval Newton method. However,
a user might prefer such a criterion. It can replace Criterion 9.4.3 or be
used in addition.

9.5 THE ALGORITHM STEPS

We now describe the steps of our interval Newton algorithm.
It is about as simple as an interval Newton method can be if it is to

possess the desired convergence behavior. It is easily programmed. In Sec-
tion 10.16, we describe a somewhat more complicated, but more efficient
interval method for solving a nonlinear equation. It adds a procedure intro-
duced in Section 10.3 to the interval Newton method to form a combined
algorithm.

In both algorithms we assume that an initial interval X0 and stopping
tolerances εX and εf are given. The algorithm stops when interval bounds
for all zeros of f in X0 have been found.

After termination, the bounds on any simple zero generally approximate
the optimal bound as defined in Section 9.3. If the tolerances εX and εf (see
Section 9.4) are not chosen too small, then each multiple zero of f in X0

is generally isolated within an interval of relative width less than εX. Also,
we generally have |f (x)| < εf for all points x in an interval bounding a
multiple zero. When this condition is verified by the algorithm, it can be
recorded for output.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Note that we can set εX = εf = 0. In this case, the algorithm generally
finds the best possible solution(s) possible for the number system used on
the computer.

In the following algorithm, the current interval is denoted by X at each
step although it changes from step to step. Also x denotes m(X) so x

changes as well. Except when using the procedure in Section 9.3 (see step
4 below) and Section 9.4 (see step 7 below), the Newton step is defined by
an expansion about x.

The following steps are performed in the order given except as indicated
by branching:

1. Put the initial interval X0 into a list L of intervals to be processed.

2. If the list L is empty, stop. Otherwise, select the interval from L that
has been in L for the shortest time. Denote the interval by X. Delete
X from L.

3. If 0 ∈ f ′(X), go to step 5.

4. Iterate the Newton method until either the result is empty or else
0 ∈ f (m(X)) .In the latter case, apply the procedure described in
Section 9.3. If the result is empty, go to step 2. Otherwise record the
solution interval that the procedure produces and go to step 2.

5. If 0 ∈ f I(x), go to step 7.

6. If w(X)

|X| < εX and w (f (X)) < εf , record X as a final bound and go

to step 2. Otherwise, go to step 8.

7. Use the procedure listed in Section 9.4. If that procedure prescribes
a point of expansion record it; and go to step 8. If it decides that the
interval X should be accepted as a solution, record X and go to step
2. If it prescribes that the interval is to be split in half, put the halves
in the list L and go to step 2.

8. Apply a Newton step as given by (9.2.2) using the interval X. If a
point of expansion was prescribed in step 7, use it in determining the
expansion defining the Newton method. If the result is empty, go to

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

step 2. If the result is a single interval, go to step 9. If the result is
two intervals, put them is list L and go to step 2.

9. If the Newton step reduced the width of the interval by at least half,
go to step 3.

10. Split the current interval in half. Put one half in list L. Designate the
other half as the current interval and go to step 3.

When the algorithm stops (see step 2), each zero of f in X0 is in one
of the intervals recorded in step 4, step 6, or step 7. Intervals might have
been recorded that do not contain a zero of f . However, every zero in X0

is in one of the output intervals. As noted in Section 9.3, the algorithm
might prove the existence (using Theorem 9.6.8 below) of a zero of f in a
recorded interval.

In step 2, we process the interval that has been in the list L for the
shortest time. This tends to keep the list L short and conserve memory.
This choice of interval is easily implemented using a stack. An alternative
choice that keeps the list short is to choose the narrowest interval in L. Our
choice tends to do this.

In the next chapter, we discuss a procedure that we have called “hull
consistency”. Before the above Newton method is used, hull consistency
is applied. This can reduce the region of search for zeros of f .

The interval X0 to which an interval Newton method is applied generally
contains more than one zero of f . Steps 7 and 10 split the current interval
and serve to separate different zeros into different intervals. This enables
rapid convergence to each zero separately.

9.6 PROPERTIES OF THE ALGORITHM

The interval Newton method is a truly remarkable algorithm when com-
pared to its noninterval counterparts. In this section, we present eight theo-
rems that illustrate its reliability, efficiency, and other properties. For these
theorems, we assume exact interval arithmetic is used. Relevant comments
are included for the case in which practical rounded arithmetic is used.

We begin with a theorem due to Moore (1966).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Theorem 9.6.1 If there exists a zero x∗ of f in Xn, then x∗ is also in the
interval N(xn, Xn) given by (9.2.2).

The conclusion of this theorem is a motivating idea in the derivation
of the interval Newton method. An examination of the derivation of the
algorithm in Section 9.2, reveals that the theorem is correct.

In practice, when rounding occurs, we calculate an interval (or intervals)
containing N(xn, Xn). Hence, even with rounding, we never “lose” a zero.
That is, the theorem is true even when rounding is present.

Theorem 9.6.2 Let an initial interval X0 be given and assume that f and
f ′ have a finite number of zeros in X0. Denote the intervals in the list L at

the i-th stage by X
(i)
j (j = 1, · · · , Ni) where Ni is the number of intervals

in L at stage i. Assume that at the i-th stage, a step of the interval Newton
method is applied to the interval of greatest width in L. Then for arbitrary
ε > 0, and all sufficiently large i, we have wi < ε where

wi =
Ni∑

j=1

w(X
(i)
j).

Note that in Theorem 9.6.2, we assume that the algorithm is applied to
the widest interval in the listL. In practice, we generally apply the algorithm
to the narrowest interval because this tends to minimize the number of
intervals in L and conserves storage. Since the practical algorithm stops
iterating on an interval while it is still finite in width, this does not affect
the convergence argument. The amount of work is the same if the intervals
are chosen from L in arbitrary order

In effect, this theorem says that the interval Newton algorithm always
converges. The theorem is proved in Hansen (1978b). Note that with exact
interval arithmetic, the interval f I(x) obtained from evaluating f (x) is the
degenerate interval [f (x), f (x)]. Hence, if f (x) = 0 then x is a zero of f .
Thus the difficulty that occurs in the practical algorithm (i.e., with rounding)
when zero is in both f I(x) and f ′(X)̇ cannot occur with exact arithmetic.
This simplifies the theorem’s proof.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In the practical case, we can generally achieve “convergence” to the
accuracy permitted by rounding. In Section 9.3, we discussed how to com-
pute the optimal bound when 0 /∈ f ′(X). When 0 ∈ f ′(X), this procedure
can be added on after the algorithm in Section 9.5 terminates. Thus, we
can compute an approximation for the optimal bound.

Theorem 9.6.3 Every discrete zero of f in X0 is isolated and bounded to
arbitrary accuracy.

Proof. From Theorem 9.6.1, no zero of f in X0 can be “lost”. From
Theorem 9.6.2, the bounds become arbitrarily sharp. Thus, the theorem
follows.

In practice, discrete zeros are isolated only if the number system pro-
vides the needed accuracy. The sharpness of the final bounds also depends
on the accuracy of the number system used.

If there is no zero of f in X0, this fact is proved by the algorithm.
Theorem 9.6.4 to follow, shows how this occurs. Theorem 9.6.5 shows that
it occurs within a finitely bounded number of iterations.

Theorem 9.6.4 (Moore, 1966) If X ∩ N(x, X) is empty, then there is no
zero of f in X.

Proof. If there is a zero of f in X, then it is also in N(x, X) by Theorem
9.6.1. Since X ∩ N(x, X) is empty, there is no zero of f in X.

If rounding occurs, we compute an interval, say N′(x, X) containing
N(x, X). If X ∩ N′(x, X) is empty, then X ∩ N(x, X) is empty. Therefore,
the theorem is applicable even when rounding occurs.

Theorem 9.6.5 Assume |f (x)| ≥ δ > 0 for all x ∈ X0 and |f ′(X0)| ≤ M

for some positive number M . Then X0 is entirely eliminated in m steps of
the algorithm of Section 9.5 where

m ≤ M w(X0)

2δ
(9.6.1)

This theorem, proved in Hansen (1978b), says that if there is no zero
of f in X0, then this fact is proved in no more than m steps where m is
bounded as in (9.6.1).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Suppose rounded interval arithmetic is used and that the conditions of
this theorem on f (x) and f ′(X0) hold for the rounded values. Then X0 is
still eliminated in a finite number of steps. However, (9.6.1) might not be
a correct bound.

Theorem 9.6.6 Assume 0 /∈ f ′(XN) for some integer N . If f is a thin
function (see Section 3.8), then w(Xn+1) ≤ 1

2 w(Xn) for all n ≥ N . If f is

a thick function, then w(Xn+1) ≤ 1
2 w(Xn) for any n for which 0 /∈ f (xn)

and 0 /∈ f ′(Xn).

Proof. If f is a thick function and 0 /∈ f (xn) and 0 /∈ f ′(Xn), then
f (xn)/f

′(Xn) is either positive or negative. Therefore, N(xn, Xn) < xn

or N(xn, Xn) > xn. Since xn is the midpoint of Xn, at least half of xn is
eliminated.

If f is a thin function, the same argument holds even if f (xn) = 0.
Moreover, Xn ⊂ XN for n ≥ N . Therefore, by inclusion isotonicity,
f ′(Xn) ⊂ f ′(XN) so 0 /∈ f ′(Xn) for all n ≥ N . Hence, the theorem
follows.

Note that when f is a thin function, rounding, in effect, turns it into a
thick function. To invoke the theorem in the rounded case, we need only
assume that the interval obtained when computing f (xn) does not contain
zero.

If 0 ∈ f ′(Xn), convergence is not as rapid. From (9.2.3) and (9.2.4),
we see that Xn+1 might be a single interval, the union of two intervals with
a gap between them, or the empty set. In each case, we have made progress
in reducing the region of search for a zero of f .

Using (9.2.3) and (9.2.4), it can be easily shown that xn /∈ Xn+1. There-
fore, if Xn is a single interval, then w(Xn+1) ≤ 1

2 w(Xn). That is, substantial
progress is made.

Suppose Xn is the union of two intervals and that xn = m(Xn). This
midpoint xn is not in N(xn, Xn). Therefore, each of the two subintervals
generated in the n-th step is of width less than 1

2 w(Xn).

It might happen that Xn+1 = Xn when 0 ∈ f ′
n(Xn). That is, the Newton

step makes no progress. In this case, we split Xn in half. (See step 10 of the
algorithm in Section 9.5.). Thus, in all cases, any new interval generated

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

for use in a later Newton step has width less than or equal to half the width
of the interval from which it is computed. This helps assure convergence
as guaranteed by Theorem 9.6.2.

Theorem 9.6.7 If 0 /∈ f ′(Xn), then there exists a constant C such that
w(Xn+1) = C[w(Xn)]2.

This well-known theorem was first proved by Moore (1966) (see also
Alefeld and Herzberger (1983)). The theorem states that if 0 /∈ f ′(Xn),

then convergence is rapid asymptotically (i.e., quadratic) while Theorem
9.6.6 says that the rate can be reasonably fast (i.e., geometric) even for wide
intervals.

Theorem 9.6.8 Let X be a finite interval. If N(x, X) ⊂ X, there exists a
simple zero of f in N(x, X).

This theorem was first proved by Hansen (1969a). His proof is for the
case in which f is a thin function (as defined in Section 3.8). The proof
contained herein follows as a special case of Theorem 9.6.9 below.

Note that evaluation of N(x, X) = x − f (x)/f ′(X) involves division
by f ′(X). If 0 ∈ f ′(X), then N(x, X) is not finite and the hypothesis
N(x, X) ⊂ X of the theorem cannot be satisfied. If X contains a multiple
zero or more than one isolated zero of f, then 0 ∈ f ′(X). Therefore,
Theorem 9.6.8 can prove existence of simple zeros only.

Theorem 9.6.9 below is a generalization of Theorem 9.6.8. It is par-
ticularly useful in practice because it holds when f is a thick function (as
defined in Section 3.8).

Letf depend on an interval parameterC. to emphasize this dependence,
we rewrite f (x) as f (x, C) and f ′(X) as f ′(X, C). Assume that f (X, C)

is a continuously differential function of x for each c ∈ C. The function
N(x, X) becomes

N(x, X, C) = x − f (x, C)

f ′(X,C)

To account for the parameter C, we rewrite Theorem 9.6.8 as follows:

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Theorem 9.6.9 Let X be a finite interval. If N(x, X, C) ⊂ X, then there
exists a simple zero of f (x, c) in X for each real c ∈ C.

This theorem (and the proof that follows) holds equally well when C is
a vector of more than one interval parameter. We assume that C is a single
parameter merely to simplify exposition.

Proof. We develop a proof by showing that f (x, c) changes sign in X

for each c ∈ C.

Let c be a point in C and let x and y be points in X. From the mean
value theorem, for each c ∈ C,

f (y, c) = f (x, c) + (y − x)f ′(ξ(c), c)

for some ξ(c) between x and y. Since x and y are in X, it follows that
ξ(c) ∈ X. Therefore,

f (y, c) ∈ f (x, c) + (y − x)f ′(X, c) (9.6.2)

for each c ∈ C.
Note that if 0 ∈ f ′(X, c), then N(x, X, C) is not finite. Hence, the

hypothesis N(x, X, C) ⊂ X of the theorem can be true only if 0 /∈ f ′(X,C)

since X is finite. Note that the condition 0 /∈ f ′(X,C) implies that any
zero of f (x, c) in X must be simple for each c ∈ C.

Denote f ′(X,C) = [p, q]. Then 0 /∈ [p, q]. Since we can change the
sign of both f and f ′ without changing the algorithm, there is no loss of
generality in assuming f ′(X,C) > 0. Therefore, we assume that p > 0.

Since C is a nondegenerate interval, so is f (x, C) even though x is
degenerate. Denote f (x, C) = [f (x, C), f (x, C)]. Also, denote X =
[X, X] and N(x, X, C) = [N(x, X, C), N(x, X, C)].

We show that f (X, c) ≤ 0 and f (X, c) ≥ 0 for each c ∈ C, which
implies that f (x, c) has a zero in X for each c ∈ C. Note that the assumption
p > 0 implies that f (x, c) is monotonically increasing in X for each c ∈ C.
Hence, if f (x, C) < 0, then f (X, C) < 0. That is, f (X, c) < 0 for each
c ∈ C, as we wished to show.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Now consider the case f (x, C) ≥ 0. In this case, the lower endpoint
of N(x, X, C) is

N(x, X, C) = x − f (x, C)

p

By assumption, N(x, X, C) ⊂ X. Therefore, the left endpoint X of X

satisfies the inequality

X ≤ x − f (x, C)

p
.

That is,

f (x, C) + (X − x)p ≤ 0

which implies that

f (x, c) + (X − x)p ≤ 0 (9.6.3)

for each c ∈ C.
From (9.6.2),

f (X, c) ∈ f (x, c) + (X − x)[p, q]

and, hence,

f (X, c) ≤ f (x, c) + (X − x)p

for each c ∈ C. Therefore, from (9.6.3), f (X, c) ≤ 0 for each c ∈ C.
We have now proved that f (X, c) ≤ 0 for all c ∈ C. Proof that

f (X, c) ≥ 0 for all c ∈ C follows in the same way. Therefore, f (x, c)

either is zero at an endpoint of X or changes sign in X. In either case,
f (x, c) has a zero in X for each c ∈ C as stated in the theorem.

When rounding is present, we compute an interval, say N′(x, X, C),
containing N(x, X, C). If N′(x, X, C) ⊂ X, then N(x, X, C) ⊂ X. There-
fore, even when rounding is present, we can prove infallibly, as in Theorem
9.6.9 that a zero of f is contained in X.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The previous theorems in this section are related to the interval New-
ton method. The following theorem is not. However, its hypothesis can
be checked using data computed for use in the interval Newton method.
Therefore, it can be used when applying the method.

Theorem 9.6.10 Assume 0 /∈ f ′(X). Then if X contains a zero of f , the
zero is simple (i.e., unique).

Proof. If 0 /∈ f ′(X), then f ′(x) is of one sign throughout X. That is,
f is monotonic in X. Hence the theorem follows.

The computed (with rounding) interval f ′(X) contains the value of
f ′(X) which can be computed with exact interval arithmetic. Therefore,
the theorem is applicable using the rounded value.

9.7 A NUMERICAL EXAMPLE

We now give a simple example to illustrate the performance of the algorithm
of Section 9.5 when the prescribed values of the tolerance εX and/or εf are
too small. We set εX = εf = 0. In this case, the algorithm generally yields
a solution that is slightly narrower than the “optimal bound” defined in
Section 9.3. We use four decimal digit interval arithmetic.

Consider the function f (x) = 4567(x − 1)2, which we evaluate in the
expanded form

f (x) = 4567x2 − 9134x + 4567 (9.7.1)

using Horner’s rule. Let the initial interval be X0 = [0, 3].
For each of the first six steps of the algorithm, the interval value of f

and/or f ′ does not contain zero and the intervals X1 = [0.7585, 0.8909]
and X2 = [0.9349, 1.088] remain. The interval X1 is deleted in one step.
We find that 0 ∈ f I[m(X2)] and 0 ∈ f ′(X2).

However, 0 /∈ f I(X2) so we use X2 as the point of expansion for the
Newton step and proceed. After two more steps, we obtain the intervals
X3 = [1.036, 1.041] and X4 = [0.9298, 1.024]. The interval X3 is deleted
in one step. We find that 0 /∈ f I(X4) so we proceed using X4 as the point
of expansion.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The result of the next step is X5 = [0.9852, 1.024]. We find that 0 ∈
f I[m(X5)] and 0 ∈ f I(X5). However, 0 /∈ f I(X5) so we proceed using X5

as the point of expansion. One additional step yields X6 = [0.9852, 1.015].
When f is evaluated at m(X6), X6, and X6, each interval value contains
zero. Therefore, we split X6. When f is evaluated at the center of each of
the subintervals of X6, each result contains zero. Therefore, we accept X6

as our final interval bound on the solution.
The optimal bound defined in Section 9.3 is X∗ = [0.9820, 1.015]. Our

result is somewhat sharper because the Newton method uses information
about the derivative of f while the optimal bound is defined using f only.

9.8 THE SLOPE INTERVAL NEWTON METHOD

We now describe the slope interval Newton method. To obtain it, we modify
the above interval Newton method by replacing the derivativef ′ by the slope
function g discussed in Section 7.7.

From (7.7.1),

f (y) = f (x) + (y − x)g(x, y) (9.8.1)

where g(x, y) is the slope function. If y is a zero of f, then f (y) = 0 and,
from (9.8.1),

y = x − f (x)

g(x, y)
.

If y is in an interval X in which we seek a zero of f , then y ∈ NS(x, X)

where

NS(x, X) = x − f (x)

g(x, X)
. (9.8.2)

To find a zero of f in an interval X, we can use the iterative method

NS(xn, Xn) = xn − f (xn)

g(xn, Xn)
,

Xn+1 = Xn ∩ NS(xn, Xn),

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

for n = 0, 1, 2, ... where X0 = X. A good choice for xn is m(Xn). We call
this procedure the slope interval Newton method. Figure 9.8.1 depicts this
method.

][

][
][

-1 5

x

-5

15

f(x)

X ∩ NS(m(X),X)

NS(m(X),X)

X

f I(m(X)) + g(m(X),X) (x - m(X))

f I(m(X)) + g(m(X),X) (x - m(X))

Figure 9.8.1: Slope Interval Newton Method.

If we compare this relation with the relation (9.2.2) for the interval
Newton method, the only apparent difference is that we have replaced f ′(X)

by g(x, X). Actually, there is another difference. To assure that any zero

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

of f in X is also in N(x, X) as given by (9.2.2), it is necessary that the
point x be in the interval X. For the slope interval Newton method, this is
not necessary.

Ifx ∈ X, theng(x, X) ⊂ f ′(X); and the containment is generally strict.
Therefore, the slope interval Newton method is generally more efficient than
the interval Newton method given in (9.2.2).

It can be shown that Theorems 9.6.1 through 9.6.5 are true for this
method using slopes. Proof of Theorem 9.6.2 requires that g have a finite
number of zeros in X.

9.9 AN EXAMPLE USING THE SLOPE METHOD

We now consider a simple example to illustrate the virtue of the slope form
of the interval Newton method. Consider the function

f (x) = x4 + 3x3 − 96x2 − 388x + 480

discussed in Section 7.8. If we determine its slope analytically using (7.7.2),
we can collect terms and write the slope as

g(x, X) = X3 + (x + 3)X2

+ (x2 + 3x − 96)X + x3 + 3x2 − 96x − 388.

Suppose we seek a root of f (x) in the interval X = [0, 4] and expand
about the center x = 2 of X. Evaluating the slope using Horner’s rule, we
obtain g(x, X) = [−904, −560]. Since f (x) = −640, the slope Newton
result is [0.8571, 1.093] approximately.

Suppose we use Horner’s method to evaluate the derivative in the stan-
dard interval Newton method. The Newton result is [0.3505, 1.429] ap-
proximately. The ratio of the widths using the slope to that using derivative
is 0.4034. That is, the slope result is considerably narrower.

In this example, we have used a relatively wide input interval X =
[0, 4]. The slope method remains superior for narrower intervals. For ex-
ample, if X = [0.999, 1.003] and x = 1.001, the ratio of widths is 0.4744.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

9.10 PERTURBED PROBLEMS

In some problems, there might be uncertainty about the values of certain
parameters. For example, they might be measured quantities of uncertain
accuracy. The function f whose zeros we seek might involve numbers that
cannot be exactly expressed in the computer’s number system. For example,
the function might be expressed in terms of transcendental numbers such
as π.

Any such parameters or numbers can be expressed as intervals that
contain their true values and whose endpoints are machine-representable
numbers. The “value” of a function f (x) involving such intervals is itself
an interval for any x. We must then ask: What do we mean by a solution
to the equation f (x) = 0?

To answer this question, it is sufficient to consider a problem involving
a single parameter p. Assume we know that p is contained in an interval
P . We rewrite the problem as f (x, P) = 0. We define the solution to this
problem to be the set S = {x : f (x, p) = 0} for all p ∈ P.

For a given value of p, we expect the function f to have a set of discrete
zeros. As p varies over P , a given zero, say x∗ “smears out” over an
interval, say X∗. This is precisely the situation we discussed in Section 9.3.
Rounding errors made while evaluating f (x) cause the resulting interval
f I(x) to contain zero when x is not a zero of f . In effect, the zeros of f

are smeared out by the rounding errors.
Although the zeros of f (x, P) = 0 are generally discrete for a single

value of p, some of the smeared zeros might overlap. This corresponds to
the case in which rounding prevents us from determining whether there is
a multiple zero or if there are close but separated zeros.

It makes no real difference to the interval Newton method whether
values of f are intervals because of rounding in evaluating f or because
f itself is a thick interval function. Therefore, there is no change in the
algorithm to solve the perturbed problem.

We make rounding errors when evaluating the perturbed function
f (x, P). This merely widens the computed interval. An interval solu-
tion is, in effect, widened because of the rounding. As in the unperturbed
case, this creates no difficulty.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

If P is a wide interval, there can be considerable uncertainty as to where
the boundary of the solution set lies. In Chapter 17, we discuss how this
difficulty can be overcome.

One easily avoidable difficulty can occur with a perturbed problem.
The interval Newton method might converge to an interval larger than a
true smeared zero. To illustrate, we consider an example from Hansen and
Greenberg (1983).

Let P = [4, 9] and f (x, P) = x2 − P . The solutions are obviously
X∗ = [2, 3] and [−3, −2]. Let X = [0.1, 4.9] and note that X contains
only one of the smeared zeros of f . Then x = m(X) = 2.5, f (x) =
[−2.75, 2.25], and f ′(X) = 2X = [0.2, 9.8]. The Newton step produces
the interval N(x, X) = [−8.75, 16.25]. Therefore, no reduction in the
original interval X occurs even though X is considerably wider than the
solution [2, 3] it contains.

Note that 0 /∈ f ′(X). This is the case we discussed in Section 9.3. In
that discussion, we considered the case in which the computed (interval)
value f I(x) of f (x) contains zero. For simplicity, we assume the only
reason f I(x) is not a degenerate interval is because of rounding. However,
as noted above, there is no real difference if the value of f I(x) is widened
because of the presence of interval parameters.

Following the procedure prescribed in Section 9.3, we define three suc-
cessive Newton steps by expanding about the center, the lower endpoint,
and the upper endpoint of the current interval. Four of these cycles pro-
duce the interval solution [1.9988, 3.0000] when recorded to five significant
decimal digits. Additional iterations can increase the lower bound, thereby
reducing the width of the result.

An alternative procedure for sharply bounding the solution set is given
in Section 17.11.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 10

CONSISTENCIES

10.1 INTRODUCTION

Consider an equation f (x, y) = 0 and assume that x and y are in intervals
X and Y , respectively. We can say that values of x ∈ X and y ∈ Y are
consistent relative to the function f if for any x ∈ X there exists y ∈ Y

such that f (x, y) = 0 and for any y ∈ Y , there exists x ∈ X such that
f (x, y) = 0. This concept obviously generalizes to more variables. It also
generalizes in various other ways. See Collavizza et al (1999).

Suppose that for a subset of values of x ∈ X, there is no y ∈ Y such that
f (x, y) = 0. Then these values of x can be excluded from consideration
when seeking solutions of f (x, y) = 0. This generalizes to functions of
more variables. Suppose we are searching for a solution of a system of
nonlinear functions in a given box. We can apply the concept of consistency
to each equation of the system to eliminate subboxes of the given box that
cannot contain the solution.

In this chapter, we consider two such procedures based on the con-
cept of consistency. One is our version of what is called box consistency
by McAllester et al (1995). See also Van Hentenryck, Michel, and Dev-
ille (1997) and Van Hentenryck, McAllester and Kapur (1997). To save
space, we abbreviate box consistency as BC. We discuss BC in the next
two sections. We discuss our version of “hull consistency” (see the above

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

references) in Section 10.3 and discuss various aspects of it in Sections 10.4
through 10.12. We compare the two procedures in Section 10.13.

10.2 BOX CONSISTENCY

Various theoretical aspects of consistency are discussed in the above ref-
erences. We restrict our discussion to those aspects needed to derive and
implement our version of what is termed “box consistency”. We motivate
the procedure from a point of view different from that in the references.
We also implement it differently. In the above references, the implementa-
tion of box consistency involves application of a one dimensional Newton
method to “solve” a single equation for a single variable. This is the extent
of the commonality between their procedure and ours.

Despite the differences in derivation and implementation, we refer to our
procedure as the box consistency procedure or simply as box consistency.
The abbreviation BC refers either to the concept or to the procedure.

Assume the solution of a given problem must satisfy the nonlinear
equation

f (x1, · · · , xn) = 0.

This equation can be one in a system to be solved or it can be a constraint
that must be satisfied in an optimization problem. Whatever the problem,
suppose that we seek a solution in a box xI. We use BC to eliminate subboxes
of X that cannot contain a point satisfying f (x1, · · · , xn) = 0.

If we replace all the variables except the i-th by their interval bounds
(i.e., components of xI), we obtain an equation that we write as

q(xi) = f (X1, · · · , Xi−1, xi, Xi+1, · · · , Xn) = 0. (10.2.1)

If 0 /∈ q(xi) for xi in some subinterval X′
i of Xi , then we do not have

consistency for xi ∈ X′
i and the subbox (X1, · · · , Xi−1, X

′
i , Xi+1, · · · , Xn)

of X can be deleted.
To help motivate the BC procedure, let us now consider (10.2.1) from a

different viewpoint. Note that q(xi) = 0 is an equation in a single variable
xi since the Xj are fixed constant intervals for all j �= i. If the intervals

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Xj for all j �= i are degenerate, the zeroes of q (as a function of xi) are
isolated points. The presence of the interval constants “smears” these zeros
into intervals that we call “interval zeros”. If we evaluate q(xi) for some
value of xi , the resulting interval cannot contain zero unless xi is in one of
these interval zeros. The interval zeros can contain all or none of Xi . They
can also form one or more subintervals of Xi. There might be gaps in Xi

between interval zeros.
Let az denote the smallest value of xi that is in the intersection of

Xi = [ai, bi] and the interval zeros of q(xi). If az > ai , then a point
xi ∈ Xi that is in the semi-open interval [ai, az) cannot be a component
of a solution of f (x) = 0. Therefore, we want to know az so that we can
delete the interval [ai, az). In practice, we use a one dimensional Newton
method to compute an interval bound on az and delete values of xi less than
the lower bound on az.

Similarly, let bz denote the largest value of xi in the intersection of Xi

and the interval zeros of q(xi). We want to delete the subinterval (bz, bi]
of Xi .

The widths of the interval roots of q(xi) depend on the widths of the
interval bounds Xj for all j �= i. Therefore, az and bz change as the
latter intervals change. There is little point in bounding the quantities az

and bz very sharply unless the bounds on other variables are relatively
narrow. Therefore, we make only a modest effort to bound az and bz

before sharpening the bounds on the variables other than xi (using the same
process). Then we do the same process for the other variables in turn. We
also use other procedures besides BC to narrow the bounds on each variable
before returning to again sharpen the bounds on xi.

Unless there is substantial progress, we apply only one Newton step to
narrow the bound on az and one Newton step to narrow the bound on bz.
However, there are cases in which it is reasonable to use more steps. For
example, suppose that f is a very complicated function and/or there are
many variables and it requires 1000 arithmetic operations to compute q(xi)

in the form (10.2.1) from f . Suppose, also, that only 5 arithmetic steps
are needed to evaluate q(xi) and 5 steps to evaluate the derivative q ′(Xi).

Then applying a Newton step to solve q(xi) = 0 is so cheap compared
to computing q(xi) that we might as well apply Newton several times.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Therefore, a user might wish to modify our algorithm (given below) for
appropriate functions.

To simplify notation, we now drop the index i. We seek to bound az and
bz in an interval X = [a, b].

Suppose we evaluate q(a). If 0 /∈ q(a), then a < az so we use a Newton
method to remove points from the lower end of X that are less than az. If
0 ∈ q(a), we do not. To remove points, we use the already computed value
of q(a) in a step of a one dimensional Newton method. Similarly, we try
to reduce the upper bound on bz only if 0 /∈ q(b). The efforts to increase a

and decrease b are treated independently.
The input interval to which the algorithm is applied is [a, b]. We sep-

arately try to increase a and decrease b. A new lower bound is sought in a
subinterval Y = [a, c] of X and a new upper bound is sought in a subin-
terval Z = [d, b] of X. Later in this section, we describe how Y and Z are
determined by choosing c and d.

It is common (good) practice to use the center of the interval as the
point of expansion when deriving an interval Newton method. However,
since we evaluate q(a) to decide whether to even try to increase the lower
bound, we define the Newton method to use this value. This saves an extra
evaluation of q. Thus, the Newton result when expanding about the point
a is

N(a, Y) = a − q(a)
∂

∂xi
q(Y)

.

For the interval Y = [−4, 2] , Figure 10.2.1 illustrates how a Newton step
about the point a = −4 produces a (small) reduction in the width of Y .
The slopes of the slanting lines in Figure 10.2.1 equal the lower and upper
bounds of ∂

∂x
q(Y).

Similarly, we use q(b) to obtain a Newton result. Expanding about b,
the Newton result is

N(b, Z) = b − q(b)
∂

∂xi
q(Z)

.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

][
][

-10 10

x

-10

10
f(x)

N(a,Y)

Y= [a,b]

qI(a) + q′(Y) (x - a)

qI(a) + q′(Y) (x - a)

Figure 10.2.1: Newton iteration with expansion about left endpoint.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

For the interval Z = [−4, 2] , Figure 10.2.2 illustrates how the Newton
step about the point b = 2 produces a substantial reduction in the width of
Z. In our figures, Y = Z. In practice, this will not be the case.

][
]

][-10 10

x

-10

10
f(x)

N(b,Z)

Z ∩ N(b,Z)

Z= [a,b]

qI(b) + q′(Z) (x - b)

qI(b) + q′(Z) (x - b)

Figure 10.2.2: Newton iteration with expansion about right endpoint.

We need to choose the widths of the intervals Y and Z to which these
Newton steps are applied. Our choices depend on how much progress is
made in previous Newton steps.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We now describe how we choose Y . We choose Z in the same way.
We choose the width of Y to be a variable fraction β of the width of X so
Y = [a, a + β w(X)]. If we choose Y too narrow, we make little progress
in reducing X even if all of Y is deleted. If we choose Y too wide, the
derivative of q over Y is a wide interval and again little (or no) progress is
made.

Initially, we choose β relatively small. We choose β so that if all of Y

is deleted, we delete a small but non-negligible part of X. If we succeed,
we repeat the Newton step with a larger value of β.

Thus, we choose β = 1
4 initially. That is, we choose c = 1

4 (3a + b) .

If all of Y is deleted by the Newton step, we double β and repeat the step
on the remaining part of X. If only a part of Y is deleted, we stop trying to
increase the lower endpoint of X. We then use the same procedure to try to
reduce the upper endpoint of X. That is, we apply the Newton method to
an interval Z = [d, b] with the point of expansion equal to b. The value of
d is chosen in the same way c is chosen.

In the algorithm, we use a tolerance εX to decide when a given interval
is sufficiently narrow to provide a final bound on a variable. We discussed
such tolerances in Section 9.4. Different tolerances can be chosen for each
variable.

The algorithm below lists steps to increase the lower bound on az.

Similar steps are used to decrease the upper bound on bz. After listing the
steps, we discuss why some are chosen as they are.

1. Set β = 1
4 and w0 = b − a.

2. If 0 ∈ q(a), exit from the algorithm.

3. Denote w = b − a and set c = a + βw. Define Y = [a, c].
4. Compute the Newton interval N(a, Y) and the interval Y ′ = Y ∩

N(a, Y).

5. If Y ′ is empty and β = 1, record the fact that all of X has been deleted
and exit from the algorithm.

6. If w(Y ′) < εX and β = 1, record Y ′ and exit from the algorithm.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

7. If Y ′ is empty and β < 1, replace a by c and replace β by 2β and go
to Step 2.

8. If w(Y ′) < 0.5 w(Y) and β = 1, replace a by Y ′ and replace b by Y
′

and go to Step 2.

9. If a < Y
′

and Y
′

< c, then a gap (Y
′
, c) has been generated in

the interval [a, b] leaving two intervals N(a, Y) and [c, b]. Exit the
algorithm and then return to apply it separately to each of the two
intervals. (Note that, since N(a, y) ⊂ Y, a solution to q(xi) = 0
exists in N(a, y).)

10. Replace a by Y ′

11. If b − a < 0.5w0, go to Step 1.

12. Record the final interval [a, b] and terminate the algorithm.

This is the BC algorithm for narrowing the bounds on a given component
of a box X. Note that if 0 /∈ q(a), then a /∈ N(a, Y). That is, progress is
made in reducing X. If the progress is sufficient, we apply another Newton
step. See Steps 8 and 11.

The algorithm to use BC is called by a main program that stops when
the interval bounds on the variables satisfy: w(Xi) ≤ εX (i = 1, · · · , n)
for some εX > 0. The interval resulting from the Newton step to bound
az might satisfy this condition. If so, we exit without trying to reduce the
interval any further. See Step 6.

If N(a, Y) ⊂ Y in Step 4, we have proved that an interval zero of q

exists in N(a, Y). See Theorem 9.6.9. Since

q (xi) = f (X1, · · · , Xi−1, xi, Xi+1, · · · , Xn)

this proves the existence of a solution of f (x) = 0 for any xj ∈ Xj

(j = 1, · · · , n; j �= i) provided xi ∈ N(a, Y). This fact might or might
not be significant.

Note that BC can be applied to “solve” inequalities. Suppose that
in place of the equality (10.2.1), we have an inequality q(xi) ≤ 0. We

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

can replace this inequality by q(xi) = [−∞, 0] and obtain the equation
q(xi) + [0, +∞] = 0. Note that the derivative of this new function is the
same as if the original relation were an equation.

We conclude our discussion of BC with comments on how it is applied.
Suppose there is more than one equation to be solved. Suppose we have
applied BC to one equation to try to narrow the bounds on xi ; and we now
wish to try to narrow the bounds on the next variable xi+1.We use a different
equation to do so.

To see why a different equation is used, consider the following argu-
ment. Suppose we reduce the current box of interest by decreasing the
bound on xi when we apply BC to a given equation. The probability that
an arbitrary point satisfies this equation is greater if the point is chosen
randomly from the new reduced box than from the old unreduced box. Be-
cause unsatisfied equations are needed to reduce or delete a box, it is better
to use a different equation the next time BC is applied to the new reduced
box.

Thus, we cycle through the equations in the order in which they occur.
We cycle through the variables in such a way that each equation is solved
once for each variable. Having chosen an equation to be solved, we solve
for the variable with smallest index that has not been used with the given
equation.

We have described a simple way to order variables and equations. Fur-
ther research might provide an improved procedure.

10.3 HULL CONSISTENCY

In this section, we introduce our version of a concept (and procedure) called
“hull consistency”. We apply it in various ways throughout this book.

We begin our discussion with a function of a single variable having a
special form. Suppose we wish to solve an equation of the form

f (x) = x − h(x) = 0.

For a solution x∗ of f (x) = 0, we have x∗ = h(x∗). Given an interval
X, inclusion isotonicity of containment sets (lemma 4.8.8) assures that any

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

solution in X satisfies x∗ ∈ h(X). Therefore the interval X′ = h(X)

contains any solution in X. If X′ ∩ X is smaller than X, this intersection
provides improved bounds on any solution in X.

When f contains multiple terms, we replace x by its bound X in some
terms of f . We then solve for x from the remaining terms. We abbreviate
“hull consistency” as HC. We now consider a more general form of f .

Assume f involves a function g that has an easily obtained inverse. For
example, g might be a power of x or ex or even a polynomial in x. Assume,
also, that we can easily solve for g from f . For example, if f = ug−v = 0,

we obtain g − v
u

= 0. If f = u
g+v

− w = 0, we obtain g − u
w

+ v = 0. For

simplicity, we assume that such manipulations have been done and that

f (x) = g(x) − h(x) = 0.

If x∗ ∈ X, then containment-set inclusion isotonicity assures that x∗ ∈
g−1 [h(X)] . In practice, the width of the interval bound g−1 [h(X)] depends
on how well we are able to overcome dependence in evaluating h(X).

There are usually many choices for g(x). For example, suppose we
wish to use HC to narrow the interval bound X on a solution of f (x) =
ax4 +bx + c = 0. We can let g(x) = bx and compute X′ = − aX4+c

b
or we

can let g(x) = ax4 and compute X′ = ± (− bX+c
a

) 1
4 . We can also separate

x4 into x2 ∗ x2 and solve for one of the factors as X′ = ± (− bX+c

aX2

) 1
2 . We

consider a particular method for choosing g in Section 10.6.
A virtue of consistency methods is that they can work well “in the

large”. When we seek a solution of f (x) = 0, we often start the search
over a large interval to assure that it contains the solution. When the solution
is not where |x| is large, we must somehow eliminate large values. For this
purpose, HC is very useful.

As an example, suppose we seek a solution of x4+x−2 = 0 in the inter-
val X = [−100, 100]. Solving for x4 and replacing x in the remaining terms
by the interval X, we obtain (X′)4 = 2−[−100, 100] = [−98, 102]. Since
(X′)4 must be non-negative, we replace this equation by (X′)4 = [0, 102]
and conclude that X′ = ± [0, 102]

1
4 so X′ = [−3.18, 3.18] approximately.

This is a substantial reduction of the original interval.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In Chapter 9, we discussed the interval Newton method for solving
nonlinear equations. Its asymptotic convergence to a solution is usually
rapid. However, generally it does not perform well when the interval in
which a solution is sought is very wide. For the example just discussed, a
step of the Newton method is able to delete a sub-interval of width only
about 10−6 from the original interval [−100, 100].

When we seek all the solutions of a given equation, we often begin
the search in a large interval to assure that all solutions are included. Our
solution procedure must eliminate the values of large magnitude. A Newton
method is not efficient in doing so. The BC and HC procedures fill this
need.

The Newton method and HC complement each another. One can work
well when the other does not. In an algorithm using both methods to solve a
system of nonlinear equations, we can emphasize use of the Newton method
when the interval is narrow and emphasize use of HC (and BC) when the
interval is wide.

Unfortunately, it is difficult to know when an interval is narrow or wide
in this sense. In our algorithms using HC and BC, we monitor their behavior
relative to that of a Newton method and emphasize use of each based on
the observed behavior.

In the multidimensional case, there is an essential difference between
consistency methods and a Newton method. The former are applied to one
equation of a system at a time while a Newton method is applied to all
equations simultaneously. This enables the Newton method to have better
convergence properties “in the small”. However, multidimensional Newton
methods tends to make little or no progress when the box is “large”.

Note that HC can be applied to inequalities. We need only replace an
inequality of the form f (x) ≤ 0 by the equation f (x) = [−∞, 0].

10.4 ANALYSIS OF HULL CONSISTENCY

Consider a general function f (x) = g(x)−h(x) = 0. The iterative step we
are considering is g(X′) = h(X) from which X′ = g−1[h(X)]. If neces-

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

sary, we delete1 any values of the range of h(X) that are not in the domain
of g−1. Therefore, we obtain X′ = g−1(Z) where Z is the intersection of
the ranges of g and h over X.

For example, suppose f (X) = X2 − X + 6 and we define g(X) = X2

and h(X) = X − 6. Let X = [−10, 10]. The procedural step is (X′)2 =
X − 6 = [−16, 4]. Since (X′)2 must be non-negative, we replace this
interval by [0, 4]. Solving for X′, we obtain X′ = ±[0, 2]. In replacing
the range of h(x) (i.e., [−16, 4]) by non-negative values, we have excluded
that part of the range of h (x) that is not in the domain of g(x) = x2.

Suppose that we reverse the roles of g and h and use the iterative step
h(X′) = g(X). That is, X′−6 = X2. We obtain X′ = [6, 106]. Intersecting
this result with the interval [−10, 10], of interest, we obtain [6, 10]. This
interval excludes the set of values for which the range of g(X) is not in the
intersection of the domain of h(X) with X.

Combining these results, we conclude that any solution ofg(x)−h(x) =
0 that occurs in X = [−10, 10] must be in both [−2, 2] and [6, 10]. Since
these intervals are disjoint, there can be no solution in [−10, 10].

In practice, if we have already reduced the interval from [−10, 10] to
[−2, 2] by solving for g, we use the narrower interval as input when solving
for h.

This example illustrates the fact that it can be advantageous to solve a
given equation for more than one of its terms. The order in which terms are
chosen affects the efficiency. Unfortunately, it can be difficult to choose
the best order.

Figure 10.4.1 illustrates a simple example of hull consistency.
The interval Newton method works rather well when solving quadratics.

Nevertheless, it requires seven steps to prove that there is no zero of x2 −
x + 6 = 0 in [−10, 10]. Thus, HC is much more efficient for this example.

When g(x) is a sufficiently simple function, the step of solving g(X′)
for X′ can be done sharply. However, if f (x) is not a simple function, then
the simplicity of g implies that h(x) = f (x) − g(x) is more complicated.
Therefore, when evaluating h(X) in practice, dependence can prevent us

1Such deletions are done automatically by the compiler if cset-based interval arithmetic
is used.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

]
[

]
[

]
[

-2 5

x

-1

4

f(x)

X ∩ X′
h(X)

g(X)

h(X)
g(X) =X

][X

Figure 10.4.1: Hull Consistency Example

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

from computing sharp bounds on the range of h. In this case, we do not
delete as much of X as is possible if we know the exact range of h over X.

10.5 IMPLEMENTING HULL CONSISTENCY

There are so many ways to implement HC that it is difficult to choose a
procedure. We take the viewpoint that we want it to be most efficient in
eliminating variable values that are large in magnitude relative to solution
values. This helps us choose the implementation of HC to use.

Earlier, we noted why we want HC to eliminate variable values that
are large in magnitude. It is because we initially introduce such values to
assure that our region of search includes all solutions to a problem. Since
a Newton method is not efficient in eliminating such values, we want HC
to do so.

Let us look at the general procedure for applying HC and then focus
on the case in which the width of the interval X is “large”. When choosing
g, we want g and h = f − g to have disjoint ranges over as much of X as
possible. One way to do this is to find a term of f that dominates the other
terms for some portion of X. For example a given power of x dominates a
power of lower degree for sufficiently large values of |x| > 1. This makes
HC a valuable tool for reducing “large” boxes because it is often easy to
find such a term.

Note that it is not always the term of highest degree that dominates in
a given interval. For example, 100x3 dominates x4 when |x| < 100.

When |x| < 1, a term of lower degree tends to dominate a term of
higher degree. Therefore, the implementation of HC to delete small values
of the variable must be different from when large values are to be deleted.

A simple procedure for choosing which term of g(x) to solve is to
evaluate all terms that are easily inverted and solve for the term with widest
range.

Solving for the dominant term is effective in practice. However, some-
times there is a better choice. Consider the function

f (x) = x4 + x2 − x − 1 = 0.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

It does not have a zero in the interval X = [2, 108]. If we apply HC by
solving for any one term, we obtain an interval that intersects X. However,
if we write the term x2 as x times x and solve for one of the factors, we
obtain

x = 1 − 1
x

− x3.

Solving for X′ as 1− 1
X

−X3, we find that X′ is negative so it has an empty
intersection with X. This proves that f (x) = 0 does not have a solution in
X.

HC can be automated so that various implementations are used. Without
automation, it is simpler to program only one or a few different forms.
Rather than change implementations of HC as the box size changes, we
can use one of the following options.

First, we can implement HC so that it is effective for large boxes and
rely on Newton’s method to provide efficiency when this is not the case.

Second, we can use more than one implementation of HC to increase the
likelihood that one is efficient. This has a drawback. If we solve each of a
system of n equations for each of the n variables, this is n2 procedures. Until
HC is automated, adding additional procedures might not be warranted,
especially because of the amount of programming involved. On the other
hand, the example in Section 10.4 shows that it can be advantageous to solve
a given equation for more than one occurrence of a given variable. It might
be possible to automate the implementation of HC and avoid extensive
programming for a given problem.

We can solve an equation for each of two occurrences of each variable.
For each variable, we can solve for a term that tends to dominate when the
magnitude of the variable is large, and also solve for a term that tends to
dominate when the magnitude of the variable is small.

Suppose we wish to apply HC when the current interval is X = [a, b].
Another option is to solve for a term that dominates when x = a and then
solve for a term that dominates when x = b.

We prefer another option that we now describe. Suppose f (x) is a
complicated function but has several simple terms that enter additively.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

That is, suppose f (x) is of the form

f (x) =
m∑

i=1

gi(x) − h(x) = 0 (10.5.1)

and assume the inverse of each function gi(x) (i = 1, · · · , m) is easily
determined. We might wish to use each gi(x) as the function to solve using
HC. We now describe how cancellation can be used to simplify the process
in a suboptimal way.

To simplify the discussion, let m = 2 so that

f (x) = g1(x) + g2(x) − h(x).

Let X be given and evaluate g1(X), g2(X), h(X), and then f (X). Suppose
we have used g1 as the function to solve using HC and obtained a new
interval X′.

We now want to solve for g2 as g2(X
′′) = h(X′) − g1(X

′). But if f

(and hence h) is quite complicated, this is a lengthy computation. Instead
of computing h(X′), we can use h(X), which has already been computed.
This saves computing at the expense of loss of sharpness. Therefore, we
want to obtain

g2(X
′′) = [f (X) − g1(X) − g2(X)] + g1(X

′).

However, f (X) contains g1(X) + g2(X) and we lose sharpness if we
subtract an interval from itself. Therefore, we use cancellation. That is, we
replace f (X) − g1(X) − g2(X) by f (X) � [g1(X) + g2(X)].

Thus, we obtain g2(X
′′) using only two additions and one cancellation.

This is not really what we want because our result uses h(X) rather than
h(X′). However, it saves the effort of computing h(X′). This use of h(X)

is implicit since we actually use g(X) − f (X).

If we solve for additional functions gi (i > 2) in the same way, we
implicitly use X as the argument of h, X′ as the argument of g1, X′′ as the
argument of g2, etc. Therefore, we obtain a narrower result if we reevaluate
f each time we solve for a new term. If we reevaluate f each time, we do

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

so m times for a function of the form (10.5.1). Using the procedure just
described, the total amount of work is generally less than that to evaluate
f twice.

This process produces a result that is generally much better than solving
for a single term only. Therefore, we might as well solve (in this way) a
given function f for every simple term in its expression.

In this procedure, we can order the terms gi (i = 1, ...m) of f in any
way we like. As we discussed earlier, it can be advantageous to implement
HC to solve for a dominant term when |x| is large. In the procedure just
described, we can choose g1 to be such a term. That is, we can eliminate
large values of a variable first.

This same procedure can be used in the multidimensional case when
each summand gi is solved for a different variable. When there is more
than one variable, there is likely to be more than one equation to be solved.
For a system of equations, we can cycle through the equations and variables
as described for BC at the end of Section 10.2. When these functions have
more than one simple term, we can cycle through the terms as well while
using the procedure just described.

Often in practice, we wish to apply HC to a function that contains terms
that are powers of x. In this case, we do not solve for each term separately
as described above. Instead, we simultaneously use all the terms that form
a polynomial.

For example, suppose the equation

f (x, y) = x4y − x2y2 − 4x − 2ex = 0

is to be satisfied in the box given by X = [1, 2] and Y = [1, 2]. Replacing
y by its bounding interval Y and replacing ex by its bound [e, e2], we obtain
the polynomial

[1, 2]x4 − [1, 4]x2 − 4x − [2e, 2e2] = 0.

Computing the roots of this polynomial by the method of Chapter 8, we
obtain the new bound [1.6477, 2] on x.

In some cases, it can be useful to solve for roots of a moderately compli-
cated function. For example, suppose the function is a multinomial. This is

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

often the case. If we replace all the variables except one by their bounding
intervals, we obtain a polynomial (with interval coefficients) in the remain-
ing variable. Call it x1. The interval roots of an interval polynomial can
be found using the method of Chapter 8. These interval roots bound the
acceptable values of x1. Note that the interval roots need be sought only in
the (assumed known) interval that bounds x1.

In this and later chapters, we consider polynomial examples that are
normally treated in the manner just described. However, we do not do so
because we are demonstrating other aspects of HC.

While it is generally a good idea to replace all variables except one by
their interval bounds to get a polynomial in the remaining variable, this is
not always true. Consider the function

f (x, y) = x2 + y2 + x2y2 − 24xy + 13. (10.5.2)

Suppose f (x, y) = 0 is one equation of a system that we wish to solve.
Assume we seek a solution in a box given by x ∈ [−a, a] and y ∈ [−a, a]
where a is some large number.

If we replace y by its bound [−a, a] and solve the resulting quadratic
equation for x, we learn only that x ∈ ± [

13
24a

, a
]
, approximately. Since a

is large, we have eliminated very little of the initial box.
But, suppose we write the function in the form

f (x, y) = x2 + y2 + (xy − 12)2 − 131.

If we replace both x and y by their bounds except for the x2 term and solve
for x2 (and then x). We obtain

x ∈ (131)1/2[−1, 1] = 11.45[−1, 1]. (10.5.3)

Here and in what follows we record results to four significant digits. This
greatly improved bound is independent of the size of a.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

This example can be used to illustrate how variations in the use of HC
can change a result. Assume we have not obtained the bound (10.5.3) and
we solve for the term 24xy from (10.5.2). Replacing all other terms by
their bounds. We obtain xy = [0.3909, a2]. This relation can be useful in
the process of solving the system of which f (x, y) = 0 is a member. It
shows that x and y have the same sign.

But,we can do better by writing f (x, y) in the form

(x − y)2 + x2y2 − 22xy + 13 = 0

and solve for 22xy. We obtain the slightly better result xy = [0.5909, a2].
We can do still better by writing f (x, y) = 0 in the form

(x − y)2 + (xy − 11)2 − 108 = 0.

Solving for the term (xy − 11)2, we obtain xy = [0.6076, a2].

10.6 CONVERGENCE

The step to solve for g(x) (and then x) can be iterated. Thus we can define

X(k+1) = g−1[h(X(k))] ∩ X(k)

for k = 0, 1, 2, ... where X(0) is an initial interval in which a solution of
f (x) = 0 is sought. This iterative procedure might or might not converge
to a single point. In practice, we generally do not iterate this process to
convergence. Nevertheless, consideration of its convergence can help in
choosing g.

We have noted that a primary virtue of HC is its ability to delete sub-
stantial portions of wide boxes. However, it can be of value for narrow
boxes as well. That is, it can be of value asymptotically when the search
for a solution is in a small box. For best performance on narrow boxes,
special implementation is required. We discuss this aspect in this section.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Our algorithm for solving systems of nonlinear equations (see Chapter
11) uses a multidimensional Newton method. When applied to a small box,
it generates (by preconditioning) a new system of linearized equations such
that each equation depends strongly on a single variable and weakly on
all others. This enables HC and BC (which operate on only one equation
at a time) to perform well on this new system. Since HC requires much
less computing than the Newton method, we apply it because it can be
profitable to do so. In this case (when the box is small), we use a special
implementation of HC.

Another reason to apply HC to small boxes is that it might prove exis-
tence of a solution of a system of nonlinear equations in the multidimen-
sional case. See Section 10.12. The possibility of doing so is enhanced
when the procedure converges rapidly as a one-dimensional method.

Let us first consider convergence of HC in the noninterval case. We
now show that if convergence occurs, its asymptotic rate is generally linear.
We then introduce a modification of the procedure that generally converges
asymptotically at a quadratic rate.

If we apply HC to the equation f (x) = g(x) − h(x) = 0, we solve for
x ′ from the relation

g(x ′) = h(x). (10.6.1)

In an iterative procedure, we repeat this step. Let x∗ be a solution of
f (x) = g(x) − h(x) = 0. Then

g(x∗) = h(x∗). (10.6.2)

From (10.6.1) and (10.6.2),

g(x ′) − g(x∗) = h(x) − h(x∗). (10.6.3)

Assume that g and h are continuously differentiable in some interval X

containing x, x ′, and x∗. Using the mean value theorem, we can expand
g(x ′) and h(x) and obtain:

(x ′ − x∗)g′(ξ) = (x − x∗)h′(η)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

where ξ ∈ X and η ∈ X. If g′(ξ) �= 0 for all ξ ∈ X, then this equation
shows that if we iterate use of (10.6.1), the asymptotic rate of convergence
(if it occurs) is at least linear. That is, the error x ′ − x∗ in x ′ is a linear
function of the error x − x∗ in x. However, it is generally not superlinear.

To get a higher rate of convergence, let us introduce a function v(x)

and write f (x) as

f (x) = [g(x) + v(x)] − [h(x) + v(x)]

Instead of solving for x ′ using (10.6.1), we now use the iterative step

g(x ′) + v(x ′) = h(x) + v(x). (10.6.4)

Using (10.6.3), we can rewrite (10.6.4) as

g(x ′) − g(x∗) + v(x ′) − v(x∗) = h(x) − h(x∗) + v(x) − v(x∗).
(10.6.5)

As before, assume x, x ′, and x∗ are in an interval X. Also, assume
g is continuously differentiable and that h and v are twice continuously
differentiable. We expand (10.6.5) about x∗. We expand the left member
to first order as a function of x ′ and the right member to second order as a
function of x. We obtain

(x ′ − x∗)[g′(ξ) + v′(ξ)] = (x − x∗)[h′(x∗) + v′(x∗)]

+ 1

2
(x − x∗)2[h′′(η) + v′′(η)]

where ξ ∈ X and η ∈ X.
Suppose we choose v so that

h′(x∗) + v′(x∗) = 0. (10.6.6)

Then

x ′ − x∗ = h′′(η) + v′′(η)

2[g′(ξ) + v′(ξ)](x − x∗)2. (10.6.7)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

If g′(ξ) + v′(ξ) �= 0 for all ξ ∈ X, then (10.6.7) shows that the procedure
is quadratically convergent asymptotically as x → x∗.

In practice, we do not know x∗, so we cannot use (10.6.6). Instead, we
approximate (10.6.6) by replacing x∗ by x. Thus, we choose v so that

v′(x) + h′(x) = 0. (10.6.8)

To use the iterative step indicated by (10.6.4), we must be able to solve
g(x ′)+v(x ′) for x ′.A simple choice for v(x) that enables such a solution is
v(x) = αg(x), where α is a constant. For this choice, we need only solve
(1 +α)g(x ′) for x ′. We can do so because we assume g is easily invertible.

From (10.6.8), we have α = −h′(x)

g′(x)
and the iterative step is

(1 + α)g(x ′) = h(x) + αg(x).

This step fails if α = −1. This is asymptotically the case if f ′(x∗) = 0,

which implies that x∗ is a multiple zero of f.

It is theoretically possible to choose v so that HC is quadratically con-
vergent to a multiple zero of f . To achieve quadratic convergence we have
to choose v so that (10.6.8) holds and also h′′(x) + v′′(x) = 0. The added
condition makes it difficult to choose v; and therefore we do not consider
this generalization.

Our choice of v must be such that we can invert g(x) + v(x). Among

the possible choices are v(x) = α[g(x)]2 or v(x) = α[g(x)] 1
2 . In either

case, we need only solve a quadratic to obtain g(x ′) and then solve g(x ′)
for x ′.

As x approaches a solution x∗, the coefficient of (x − x∗)2 in (10.6.7)
approaches a value known as the asymptotic constant. We denote it by

C(x∗) = h′′(x∗) + v′′(x∗)
2[g′(x∗) + v′(x∗)] .

The asymptotic behavior of a quadratically convergent form of HC can
depend strongly on how g and v are chosen. We can see this by considering
C(x∗).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

For example, suppose we choose v(x) = αg(x) and use HC to find the
zeros 10 and 0.001 of

f (x) = (x − 10)(x − 1)(x − 0.001)(x + 1)

= x4 − 10.001x3 − 0.99x2 + 10.001x + 0.01.

Let us first choose g(x) so that it is large when |x| is large. Let g(x) = x4.
Then C(10) = 0.152 and C(0.001) = 1500. That is, convergence to the
large zero is much more rapid than to the small zero. Next, choose g =
10.001x so that g(x) dominates the other powers of x when |x| is small.
We find C(10) = −0.303 and C(0.001) = 0.003. Now convergence is
more rapid to the smaller zero.

These differences in values of the asymptotic constant are qualitatively

the same for this example if we use v(x) = α[g(x)]2 or v(x) = α[g(x)] 1
2

instead of v(x) = αg(x). That is, if g is chosen so that HC is efficient in
deleting values of x that are (say) large in magnitude, the procedure remains
so no matter the form we use for v.

It can be argued that there is no need for a quadratically convergent
form of HC because the interval Newton method has this property (when
converging to a simple zero of f). For best performance for both small and
large values of |x|, more than one form of HC must be used. However the
Newton method requires use of a single form only.

The data needed for HC to exhibit quadratic convergence is essentially
the same as for Newton’s method. For Newton’s method, we need to evalu-
ate f ′(X) and we can compute it by separately computing g′(X) and h′(X).

If we define v(x) = αg(x), then for HC, we want α = −h′(x∗)
g′(x∗) . Know-

ing g′(X) and h′(X), we can approximate this value by α = −m(h′(X))
m(g′(X))

.

Therefore, one can use both methods with very little extra computing.

It can be shown that the asymptotic constant for Newton’s method is

CN(x∗) = f ′′(x∗)
2f ′(x∗)

.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

For the above example, we find CN(10) = −0.908 and CN(0.001) = 0.096.

Thus, the asymptotic performance of the Newton method can be better or
worse than a particular form of HC.

10.7 CONVERGENCE IN THE INTERVAL CASE

Quadratic convergence is rather meaningless for an iterative step of a non-
interval iterative procedure when the current point is far from a solution.
Correspondingly, there is little or no virtue in considering the asymptotic
behavior of an interval procedure when the box in which a solution is sought
is large.

Therefore, there is no point in introducing the term v(x) in the interval
case unless the box is small. This is especially true since to determine v we
must do the extra work of evaluating the derivatives of g and h.

Suppose we do want to improve convergence in the interval version of
HC. Suppose we choose the function v(x) occurring in (10.6.4) to have the
form v(x) = αu(x). As noted in Section 10.6, some easy-to-implement

choices for u(x) are g(x), [g(x)]2 and [g(x)] 1
2 . From (10.6.3), we want to

choose α so that αu′(x∗)+h′(x∗) = 0. In the interval case, we approximate
the unknown x∗ by x0 = m(X) where X is the current interval. Thus,

α = −h′(x0)

u′(x0)
.

The right member of (10.6.4) becomes h(x)+αu(x). Before evaluating
this function with interval argumentX, we rewrite its analytic form to reduce
the effect of dependence. This might entail combining terms, cancelling
terms, factoring, completing squares, etc.

10.8 SPLITTING

Suppose we are solving a system of nonlinear equations or an optimization
problem by an interval method. We use HC as one of the procedures in the
algorithm to solve such problems. When progress is slow or nonexistent, it
is necessary to split the current box into subboxes. Suppose we implement
HC so that it is most effective at eliminating values of variables that are
large in magnitude. This influences how we split a given box.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We have noted that an interval Newton method is most effective when
the width of the box is small. We can split so that both HC and Newton’s
method tend to be effective in one of the subboxes generated by splitting.

A natural way to split an interval such as X = [−10, 10] is to split it
into the two sub-intervals [−10, 0] and [0, 10]. However, each new interval
contains both small and (relatively) large values of x. A better way to split
is to subdivide X into [−10, −1], [−1, 1], and [1, 10]. Assuming we have
designed our HC method to perform best for large values of a variable, it
should do well in the new intervals where |x| ≥ 1. We expect the Newton
method to perform better in the interval [−1, 1] than in a wider interval
such as [0, 10]. Therefore, if we split in this way, one method or the other
is likely to perform well in each new interval.

This kind of splitting can have an added benefit that we illustrate by an
example. Suppose we have a two-dimensional box specified by component
intervals X and Y ; and we wish to solve an equation of the form f (x, y) =
xy−h(x, y) for x as X′ = h(X,Y)

Y
. If 0 ∈ Y , then X′ is unbounded. Suppose

we obtain the interval Y by splitting an interval [−10, 10]. If we split it
into [−10, 0] and [0, 10], then, for Y equal to either of these subintervals,
the interval X′ is unbounded. But if we split [−10, 10] into [−10, −1],
[−1, 1], and [1, 10], then for two of these cases, X′ is bounded.

We use these considerations when discussing splitting in Section 11.8
and elsewhere. We now give the steps of a splitting procedure that is based
on the above discussion. It can be used when solving either nonlinear
equations or optimization problems.

For one dimensional problems, it is reasonable to split an interval into
more than two parts. For multidimensional problems, we prefer to split
more than one component interval rather than split a given component into
more than two parts. This explains Step 2 in the procedure below.

Denote the interval to be split by [a, b].

1. If X ⊆ [−2, 2] and m (X) = 0 (so that a = −b), split X into
[
a, a

1024

]
and

[
a

1024 , b
]
. (Note: The number 1024 is an arbitrarily

chosen power of 2.)

2. If X � [−2, 2], and 0 ∈ X, split X as follows:

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

(a) If the problem being solved by the main program is multidi-
mensional, split X at whichever of −1 and +1 is nearest the
center of X. If m(X) = 0, split at either x = −1 or x = +1.

(b) If the problem being solved is one dimensional, split X at −1
if −1 ∈ X and also at +1 if 1 ∈ X.

3. Otherwise, split X in half.

There is an obvious exception to this way of splitting. Suppose,
f (x, y) = xy − h(x, y) and we find that h(X, Y) > 0 so that xy > 0.

Then x and y have the same sign. If (for example), both X and Y contain
zero, we split both X and Y at 0 to delete the second and fourth quad-
rants where x and y have opposite signs. This method of splitting takes
precedence over splitting at ±1.

10.9 THE MULTIDIMENSIONAL CASE

In the multidimensional case, we apply HC to one equation of a system of
equations and solve for one variable at a time. To do so, we replace all other
variables by their interval bounds. Let a box X and an equation f (x) = 0
be given. As for BC (see Section 10.2), obtain

q(xi) = f (X1, · · · , Xi−1, xi, Xi+1, · · · , Xn) = 0.

We can now solve this equation for the single variable xi. This is the case
we have been discussing. The difference is that now the equation involves
interval constants.

A subset of the equations in a system of nonlinear equations often
contains terms that are linear in some of the variables. In this case, we can
use HC to solve for linear combinations of such variables and then solve
the linear system. We can also solve for linear combinations of simple
nonlinear functions.

In the multidimensional case, we can solve for a term involving more
than one variable. We then have a two stage process. For example, suppose

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

we solve for the term 1
x+y

from the function

f (x, y) = 1

x + y
− h(x, y) = 0.

Let x ∈ X = [1, 2] and y ∈ Y = [0.5, 2]. Suppose we find that h(X, Y) =
[0.5, 1]. Then 1

x+y
∈ [0.5, 1] so x + y ∈ [1, 2]. Now we replace y by Y =

[0.5, 2] and obtain the bound [−1, 1.5] on X. Intersecting this interval with
the given bound X = [1, 2] on x, we obtain the new bound X′ = [1, 1.5].

We can use X′ to get a new bound on h; but this might require extensive
computing if h is a complicated function; so suppose we do not. Suppose
that we do, however, use this bound in our intermediate result x+y = [1, 2].
Solving for y as [1, 2] − X′, we obtain the bound [−0.5, 1]. Intersecting
this interval with Y , we obtain the new bound Y ′ = [0.5, 1] on y. Thus, we
improve the bounds on both x and y by solving for a single term of f .

For a system of equations, we apply HC by cycling through the equa-
tions and variables as described at the end of Section 10.2. Suppose we
have solved once for each variable from each equation. We can now repeat
the process. In our optimization algorithms, we do so only if sufficient
progress is made in a given cycle. Otherwise, we apply other procedures.
If they also fail to make sufficient progress we split the box.

10.10 CHECKING FOR NONEXISTENCE

Consider a single equation f (x) = 0 in which x is a vector. We often
want to know if there exists a point or points in a box xI that satisfies the
equation. It is common practice to check for nonexistence of such points
by evaluating f over the box. If 0 /∈ f (xI), then no such point exists in X.

That is, f has no zero in xI.

When this test fails to prove nonexistence, one usually seeks a point
or points x in xI that satisfies f (x) = 0 (and generally other equations as
well). If we do seek such points, it is better to replace this nonexistence test
by an application of HC. In so doing, we might be able to reduce xI when
performing a nonexistence test that fails (to prove nonexistence).

To illustrate this fact, consider a one dimensional equation of the form
f (x) = x − h(x) = 0. Suppose that for a given interval X, we obtain

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

f (X) > 0, which proves that there is no pointx ∈ X that satisfies f (x) = 0.

We can express f (X) > 0 as X > h(X). Suppose we apply HC in the form
X′ = h(X). Then we have X′ < X. Since any solution of f (x) = 0 in
X must also be in X′, we conclude (as for the nonexistence test) that there
does not exist a solution in X. Note that this is a kind of converse of an
existence proof of a solution using a fixed point theorem.

If X′ ∩X is not empty but is smaller than X, the latter procedure makes
progress in isolating any zero of f in X. We make this progress with essen-
tially the same amount of computing needed to evaluate f (X) to perform
the nonexistence test. Since HC yields the same or more information than
the nonexistence test with the same amount of computing, we always use
HC rather than a nonexistence test. We often use HC in this way in our
optimization algorithms.

Little extra computing is needed if we use HC in the more general form
in which f (x) = g(x)−h(x) and we solve for g(X′). Only one small extra
step is needed to solve g(X′) for X′. We have assumed that this is easy to
do.

This same saving of effort can be used for inequalities. Suppose we
have an inequality f (x) ≤ 0. Instead of testing whether a box X is certainly
infeasible by evaluating f (X), we can solve f (x) = [−∞, 0] using HC
and possibly eliminate some certainly infeasible points from X. We have
occasion to use HC in this way for both equations and inequalities in various
places in this book.

Consider the function

f (x, y) = xy − 10 = 0.

and assume 0 ∈ X and 0 ∈ Y. To solve for x or y when using HC, we must
divide by an interval containing zero. Thus, it might appear that evaluating
f (X, Y) is better than HC to check for nonexistence of a solution. This is
not so.

Suppose X = [−4, 6] and Y = [−2, 2]. If we evaluate f (X, Y), we
obtain [−22, 2]. Since 0 ∈ f (X, Y), we have failed to prove nonexistence.
If we replace y by Y and solve for X, we obtain X′ = [−∞, −5]∪[5, +∞].
Since X ∩ X′ = [5, 6], the equation f (x, y) = 0 has a solution with y ∈ Y

only if x is in this reduced interval.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

It takes a little more effort to compute X′ and X ∩ X′ than to simply
evaluate f (X, Y). However, the extra effort reduces the interval bound on
x from [−4, 6] to [5, 6]. Even if we have to divide by an interval containing
zero to apply HC, it is better to do so than to simply check for nonexistence
by evaluating f.

Suppose we have applied HC to a function f over a box xI. If xI is
unchanged in doing so, we obtain the data to easily evaluate f (xI). If xI

is only slightly changed, we can get a good approximation for f evaluated
over the reduced box.

This can be useful. In our optimization algorithms, we split a box when
little or no progress is made in applying the algorithm to the box. This
implies that we can get good approximations to the value over the box for
any function to which we have applied HC. We can use such information
to determine how best to split the box. We now show how to compute the
approximation.

Suppose we apply HC to a function of the formf (x) = a(x)g(x1)−h(x)

where x = (x1, · · · , xn)
T and we seek a new bound on x1. In previous

sections, we implicitly assume that a function of this form is rewritten by
dividing through by a (x) to isolate g (x1). When we apply HC over a box xI,

we evaluate a(xI) and h(xI).We then determine X′
1 = g−1

(
h(xI)

a(xI)

)
and X′′

1 =
X1 ∩ X′

1. Since g is chosen to be a simple function, we can easily evaluate

g(X′′
1) and thus obtain the function f̃ (xI, X′′

1) = a(xI)g(X′′
1) − h(xI).

Denote the new box by xI′′ = (X′′
1 , X2, · · · , Xn)

T . We want a value

for f (xI′′). Note that a(xI) and h(xI) are evaluated using X1 rather than
X′′

1 . Therefore, f (xI′′) ⊂ f̃ (xI, X′′
1) because X′′

1 ⊂ X1. By assumption,

either xI′′ = xI or else xI′′ differs very little from xI. Therefore, either
f̃ (xI, X′′

1) = f (xI) or else f̃ (xI, X′′
1) is a good approximation for f (xI).

Normally, we apply hull consistency to solve a given equation for each
of the variables on which it depends. In practice, the step to bound f (xI)

is done only after solving for the last of the variables.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

10.11 LINEAR COMBINATIONS OF FUNCTIONS

Suppose we wish to find a solution of a system of nonlinear equations in
a given box. We can apply HC to each equation of the system to try to
eliminate parts of the box that cannot contain the solution. But, we can
sometimes eliminate larger parts of the box if we apply HC to a linear
combination of equations from the system.

The following system is trivial but illustrates the idea. Suppose we want
to solve the system

x + y = 0,

x − y = 0

for x ∈ X = [−1, 1] and y ∈ Y = [−1, 1]. Note that these functions
represent the diagonals of the box. For either equation, if we choose any
x ∈ X, there exists a y ∈ Y that satisfies the equation. Therefore, HC
cannot reduce the box. If we add the equations, we get 2x = 0 and if
we subtract them we get 2y = 0. From these equations HC produces the
solution x = y = 0.

By taking linear combinations, we have rotated (and stretched) the
diagonals of the box so that they coincide with the coordinate axes. Now
HC can eliminate half planes into which a given line does not enter.

Suppose we seek a solution to a general system of nonlinear equations
in a box of small width. If the width is sufficiently small, the surfaces rep-
resented by the functions are closely approximated by their tangent planes.
If the tangent planes at a given point are linearly independent, a linear com-
bination of them can transform them to coincide with the coordinate axes.
This enables HC to eliminate larger parts of the box than when using the
original system.

Denote a system of nonlinear equations by the vector function f(x) =
(f1(x), ...fn(x))T . In an interval Newton method (see Chapter 11), we use
the expansion

f(y) = f(x) + J(x, xI)(y − x) = 0 (10.11.1)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

where J(x, xI) is the Jacobian of f evaluated over a box xI containing the
points x and y. See Section 7.4. If x is the center of xI and if Jc is the
center of J(x, xI), then the equation f(x) + Jc(y − x) = 0 approximates
the tangent planes of the components of f at x. Assume the matrix Jc is
nonsingular and let B be an approximation for its inverse. Then the tangent
plane of the i-th equation of Bf(x) approximates the i-th coordinate axis.
In an interval Newton method, we precondition the system (10.11.1) using
B.

We can apply HC to the linear combination Bf(x) of nonlinear equations
from the original system. We solve the i-th equation of Bf(x) for the i-th
variable only. Before doing so, we analytically generate the function

[Bf(x)]i = Bi,1f1(x) + · · · + Bi,nfn(x). (10.11.2)

We write it in analytic form with terms collected and arranged to produce the
sharpest interval values when evaluated with interval arguments. Afterward,
we substitute numerical values for Bi,j (i, j = 1, · · · , n).

If the box is not small, the tangent planes can be poor approximations for
the functions. In this case, this procedure might not be helpful. Moreover,
a linear combination of functions is more complicated than the original
component functions of f(x). Therefore, it is likely that dependence causes
greater loss of sharpness when applying HC to the transformed functions.
Therefore, this procedure for using linear combinations of functions is best
used only when the box is small. It is for small boxes that we want to use an
interval Newton method; and it is for the Newton method that we compute
the matrix B needed for the HC procedure just described.

After a Newton step is applied, we apply HC and BC to the linear
combination of nonlinear functions as described above. This involves more
computation than application to the original system. If the box is small,
it is for this step that the quadratically convergent form of HC (described
in Section 10.6) is of value. This is because it is applied to an equation
that depends strongly on only one variable and because the box is small so
behavior of the procedure is approximately asymptotic.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

10.12 PROVING EXISTENCE

It is possible to prove the existence of a solution of a system of non-
linear equations in a box X using HC. Let x, f, g, and h be vectors
of n components and let the components of f be of the form fi(x) =
gi(x) − hi(x) (i = 1, · · · , n). Suppose we compute a new box xI′ as
X′

i = g−1
i [hi(xI)] (i = 1, · · · , n). This is equivalent to applying HC to

the equation xi − g−1
i [hi(x)] (i = 1, · · · , n). Therefore, we might as well

assume that the original equation has the form f(x) = x − h(x) = 0. For
simplicity, we do so. We now apply HC in the form

xI′ = h(xI).

Let h be a continuous function of x for x ∈ xI and let hI(xI) be a
continuous, containment-set enclosure of h(x) for x ∈ xI.

Theorem 10.12.1 If hI(xI) ⊂ xI, then there exists a solution of f (x) =
x − h(x) = 0 in xI.

Proof. Since h(x) ∈ hI(xI) for all x ∈ xI, the function h(x) maps
the convex, compact set xI into itself. Therefore, the Brouwer fixed point
theorem (see Theorem 5.3.13 of Neumaier (1990)) assures that this function
has a fixed point x∗ in the interior of xI. That is, x∗ = h(x∗) and hence
f(x∗) = 0.

To apply this theorem, we evaluate each component of h over the same
box xI. In practice, we use a reduced component of xI as soon as it is
computed. We can prove existence using this more efficient form.

We illustrate the procedure for a system of two equations of two vari-
ables. Assume we are able to write the equations in the form

f1(x1, x2) = x1 − h1(x1, x2) = 0,

f2(x1, x2) = x2 − h2(x1, x2) = 0.

We apply HC to the first equation in the form

X′
1 = H1(X1, X2).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Assume that X′
1 ⊂ X1. We next apply HC to the second equation in the

form

X′
2 = H2(X

′
1, X2).

Assume that X′
2 ⊂ X2.

Since X′
1 ⊂ X1, we conclude from Theorem 9.6.8:

Conclusion 10.12.2 For each x2 ∈ X2, there exists x∗
1 ∈ X1 such that

f1(x
∗
1 , x2) = 0. Since X′

2 ⊂ X2, we conclude:

Conclusion 10.12.3 For each x1 ∈ X′
1, there exists x∗

2 ∈ X2 such that
f2(x1, x

∗
2) = 0.

Since Conclusion 10.12.2 is true for each x2 ∈ X2 and since x∗
2 ∈ X2, it is

true for x∗
2 . That is, f1(x

∗
1 , x∗

2) = 0. Since Conclusion 10.12.3 is true for
each x1 ∈ X′

1 and since x∗
1 ∈ X′

1, it is true for x∗
1 . That is, f2(x

∗
1 , x∗

2) = 0.

Therefore, the point (x∗
1 , x∗

2) is a solution of the system. Thus, we have
proved the existence of a solution in a subbox of the original box.

We have shown that it is possible to prove existence of a solution of
a system of equations by applying HC to one equation at a time. This
same method of proof of existence can be used when any method is applied
to one equation at a time provided the method can verify existence in the
one dimensional case. In particular, the one dimensional interval Newton
method is such a method. See Theorem 9.6.9. We use this fact in Chapter
15.

10.13 COMPARING BOX AND HULL CONSISTENCIES

Box consistency and hull consistency differ in performance and capabilities.
To apply BC to a function, the function must be continuously differentiable
so that the Newton method is applicable. To apply HC, the function need
not even be continuous.

HC is much faster than BC in achieving its result. Therefore, we em-
phasize its use and let BC play a subordinate role. However, a result from
HC might not be as narrow as a result from BC. This is generally the case

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

when HC solves for a single term. However, when HC solves for more than
one term (such as a quadratic expression), the result can be sharper than
would be obtained using BC. We give an example in Section 12.7. Each
method has virtues and drawbacks. We use the virtues of both methods in
our algorithms.

To illustrate the difference in performance of HC and BC, consider the
function

f (x, y) = x3 + 100x + 10y = 0.

Assume we wish to bound x when x ∈ X = [−100, 100] and Y =
[−100, 100]. Replacing y by Y , we obtain

x3 + 100x + [−1000, 1000] = 0.

If we apply HC by solving for the term x3, we obtain

x3 ∈ −100X − [−1000, 1000] = [−11000, 11000]

and hence x ∈ [−22.24, 22.24]. If we iterate this step, the limiting interval
bound on x is approximately [−13.25, 13.25].

Suppose we use BC by applying one Newton step to increase the lower
bound and one Newton step to decrease the upper bound. We obtain
[−66.42, 66.42] approximately. Thus, we perform more work than a step
of HC and obtain less sharp bounds. To get bounds as good as that from one
step of HC, we must apply ten Newton steps when using BC. However, if we
iterate BC, the limiting interval bound is approximately [−6.824, 6.824],
which is narrower than the best possible HC result.

BC can usually produce bounds that are at least as narrow as those from
HC. However, this requires more computing effort. In fact, it might be true
only in the limit after an infinite number of BC steps.

Consider a function of the form xm
1 − h(x2, · · · , xn) = 0 where m ≥ 2

and where x1 does not occur in h. To solve for x1 using either HC or BC,
we replace x2, · · · , xn by their interval bounds and solve for x1. Using HC,
we get the best possible result in one step. Using BC, we must iterate and
generally stop with a result that is not as good as that produced by HC.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In the various algorithms in this book, we often follow a HC step with a
BC step. The BC step is skipped in certain cases. Recall that to apply HC,
we solve for a given variable xi using g(xi) = h(x). If h(x) is independent
of xi, then BC cannot improve the interval bound on xi obtained using HC.
Therefore we do not use BC.

Consider a function of a single variable x whose value is dominated by
a term xm when x is large. Assume the width of the initial bound X on x is
relatively large. Then a Newton step applied to X tends to reduce the width
of X by a factor 1 − 1

m
. Thus, under these circumstances, BC can be rather

slow.

The speed of HC for such an example depends on the subdominant
terms. It can be slow or fast or it might not make any progress at all.

Although BC might be slow in some cases, it is still of considerable
value. Consider a problem in which HC makes little progress. Let us
compare BC in this case with the alternative of using a multidimensional
Newton method (see Section 11.2).

Suppose we are solving a system of nonlinear equations over a large
box xI. If the Newton method fails to make progress, we have wasted a great
deal of effort. If BC fails, much less effort is wasted. To make progress
for either method, we split one or more components of X. Generally,
less splitting is needed for BC to make progress. This is because BC is
a one dimensional procedure; and splitting need be done only in the one
dimension. To improve the performance of a multidimensional Newton
method, it is generally necessary to split a box in more than one dimension.
Less splitting can result in considerable saving of computing effort.

A virtue of consistency methods is that they reduce the region of search
for solutions to a given problem. The region might contain one or many
solutions (or none). When a region has been reduced so that it contains
only one solution, we generally rely on a Newton method to provide better
performance. See Chapters 9 and 11. When solving for zeros of functions
in one dimension, we precede the Newton procedure by an application of
HC.

However, BC is omitted. It is designed merely to reduce the region
of search. The Newton procedure of Section 9.5 is designed to separate

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

isolated solutions and provide rapid convergence to each of them. If HC is
appropriately implemented, it can also separate isolated solutions.

10.14 SHARPENING RANGE BOUNDS

Suppose we want to bound the range of a function f (x) over an interval
X. From Theorem 3.2.2, we can obtain bounds by simply evaluating the
function over X using interval arithmetic. However, as noted in Section
2.4, dependence generally precludes the bounds from being sharp. In this
section, we show how consistency methods can be used to sharpen such
bounds.

We discuss the procedure for the case in which HC is used. However,
BC can also be used. We assume the function is thin. That is, it contains
no nondegenerate interval parameters. However, this need not be the case.

Denote the exact range of f over X by f (X) = [f (X), f (X)]. Sup-
pose we evaluate f (X) using interval arithmetic and, because of rounding
and dependence obtain a nonsharp interval [F(X), F (X)] bounding f (X).
Suppose we also evaluate f at two or more points of X. For example, we
might evaluate f at the endpoints of X. Denote the smallest sampled value
by fS and the largest by fL. Then

F(X) ≤ f (X) ≤ fS ≤ fL ≤ f (X) ≤ F(X). (10.14.1)

Inequalities of this sort are used by Jaulin, et al (2001) to define versions
of BC.

Suppose we use HC to delete points of X where f > fS. Denote the
resulting interval by X′. Note that any point of X at which f = f (X)

will be retained in X′. Suppose we now evaluate f over X′ and obtain
[F(X′), F (X′)]. Then F(X′) is a lower bound on f (X). This new bound

will generally by sharper than F(X) since X′ is generally a narrower interval
than X.

A similar procedure can be used to sharpen the upper bound F(X).

As an example, consider the function

f (x) = x3 − 4x2 + 15x.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

If we evaluate f over the interval X = [2, 6] using nesting, we obtain

F(X) = 6 and F(X) = 162.

Evaluating f at the endpoints of X, we obtain

fS = f (2) = 22 and fL = f (6) = 162.

To apply HC to the inequality f (x) ≤ 22, we define g(x) = x3 and we
write h(x) = 4x2 − 15x in the form

h(x) = 4(x − 1.875)2 − 14.0625

to reduce dependence when evaluating h. We thus solve for X′ from

(X′)3 − 4(X − 1.875)2 + 14.0625 = [−∞, 22].

After intersecting the result with X, we obtain X′ = [2, 4.236].
This interval must contain the minimum of f. Evaluating f (X′) using

nesting, we obtain F(X′) = 13.0567. Thus, we have increased the lower
bound on f (X) from 6 to 13.0567. The function f is monotonic in X and
the exact lower bound is 22.

Using a similar procedure to obtain a subinterval X′′ of X containing
f (X), we obtain F(X′′) = 162. Since this value is actually taken on at the
sampled value of f at x = 6, we have proved that the exact value of f (X)

is 162. That is, our upper bound for f (X) is sharp.
A similar procedure can be used to improve bounds on the range of a

multivariable function.

10.15 USING DISCRIMINANTS

The equations to which we apply HC in practice often contain a given
variable both linearly and quadratically. In this case, the function g used to
define a step of HC can be a sum of these terms. To invert g we must solve
a quadratic equation. In this section, we note that the discriminant of the
quadratic equation can play a significant role.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The ancient formula

r± = −B ± (
B2 − 4AC

) 1
2

2A
(10.15.1)

expresses the roots of a quadratic equation
Ax2 + Bx + C = 0

in terms of the square root of the discriminant
D = B2 − 4AC.

We noted in Section 8.1 that generally one should not use the explicit
expression (8.1.2) to find roots of an interval quadratic equation. Instead,
the method of Section 8.2 should be used. This procedure reduces loss of
sharpness in computed roots resulting from dependence.

Nevertheless, (10.15.1) is useful because of the implied condition

B2 − 4AC ≥ 0, (10.15.2)

which is necessary for the roots to be real. This condition can be used in
various ways when solving problems in which an (appropriate) equation
must be satisfied. The inequality in (10.15.2) is an example of a domain
constraint discussed in Chapter 4 on page 71.

We now consider some illustrative examples. First, consider the equa-
tion

x2y2 − 20xy + x2 + y2 + 10 = 0. (10.15.3)

Suppose we wish to find all solutions of this equation in the box given
by X = Y = [−100, 100]. We can apply HC by regarding this equation
as a quadratic in the product xy. Solving the quadratic by the method of
Section 8.2 does not reduce the box. Similarly, if we regard the equation
as a quadratic in x (or in y) we do not reduce the box.

However, regarding the equation as a quadratic in xy, the discriminant
is

D1 = 360 − 4(x2 + y2).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

If we apply HC to the condition D1 ≥ 0, we obtain a new box given by
X′ = Y ′ = [−9.49, 9.49], approximately.

We get an even better result if we regard (10.15.3) as a quadratic in y.
The discriminant is

D2 = −4x4 + 356x2 − 40.

The condition D2 ≥ 0 yields X′ = ±[0.335, 9.43], approximately. The
same result can be obtained for y.

In this example, we are unable to reduce the box simply by solving the
quadratic equation. However, reduction is obtained using the condition that
a discriminant be nonnegative.

The difficulty that prevents us from reducing the box by solving a
quadratic is that the coefficients of the quadratic are dependent. It is possi-
ble to overcome this difficulty by a more sophisticated approach in which
we find the extrema of the roots when they are expressed analytically using
(10.15.1).

As another example, assume the equation

x4y − x2y2 − 4x − 20 = 0 (10.15.4)

must hold in some box. We can obviously regard this equation as a quadratic
in y. Also, we can think of x in the linear term as a separate variable and
regard the equation as a quadratic in x2. Also, we can think of x4 in the
leading term as a separate variable and regard the equation as a quadratic
in x. The relevant discriminants for these cases are

D1 = x8 − 4x2(4x + 20) ≥ 0,

D2 = y4 + 4y(4x + 20) ≥ 0,

D3 = 16 + 4y2(x4y − 20) ≥ 0.

Suppose (10.15.3) must be satisfied in a box given by X = Y = [−5, 5].
If we apply HC directly to (10.15.4), we are unable to reduce the box.
However, applying HC to D1 ≥ 0, we can delete the gap (−1.91, 2.20) from
X. Applying HC to D3 ≥ 0, we can reduce the interval Y to [−0.448, 5].
Thus, use of the discriminant relations is fruitful.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

10.16 NONLINEAR EQUATIONS OF ONE VARIABLE

In Section 9.5, we give the steps of an interval Newton method for solving
nonlinear equations in one variable. We now give the steps of that algorithm
after incorporating hull consistency. This makes the new steps somewhat
more complicated than the original ones in Section 9.5. However, they are
more efficient, especially when the initial interval is wide.

At any stage of the algorithm, the current interval is denoted by X even
though it changes from step to step.

1. Put the initial interval X0 into a list L of intervals to be processed.

2. If the list L is empty, stop. Otherwise, select the interval X from L

that has been in L for the shortest time. For later reference (in Step
10), record this interval X by the name X(1).

3. Using the interval X, apply hull consistency to the equation f (x) =
0. If the result is empty, go to Step 2.

4. If 0 ∈ f ′(X), go to Step 6.

5. Apply the procedure described in Section 9.3, which either bounds a
solution in X or proves that there is no solution in X. If the result is
empty, go to Step 2. Otherwise record the solution interval that the
procedure produces and go to Step 2.

6. If 0 ∈ f I (x),go to Step 8.

7. If w(X)

|X| < εX and w(f (X)) < εf , record X as a final bound and go

to Step 2. Otherwise, go to Step 9.

8. Use the procedure listed in Section 9.4. If that procedure prescribes
a point of expansion, record it; and go to Step 9. If it decides that
the interval X should be accepted as a solution, record X and go to
Step 2. If it prescribes that the interval is to be split, do so using the
procedure at the end of Section 10.8. Put the subintervals generated
by splitting into the list L and go to Step 2.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

9. Apply a Newton step as given by (9.2.2) using the interval X. If a
point of expansion was prescribed in Step 8, use it in determining
the expansion defining the Newton method. If the result is a single
interval, go to Step 10. If the result is two intervals, put them in list
L and go to Step 2.

10. If the width of X is less than half that of X(1) (defined in Step 3), go
to Step 3.

11. Split X using the procedure given in Section 10.8. Put the resulting
subintervals into list L and go to Step 2.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 11

SYSTEMS OF NONLINEAR
EQUATIONS

11.1 INTRODUCTION

Let f : Rn → Rn be a continuously differentiable function. In this chapter,
we consider the problem of finding and bounding all the solution vectors

of f = 0 in a given box xI(0). For noninterval methods, it can sometimes
be difficult to find one solution, quite difficult to find all solutions, and
generally impossible to know whether all solutions have been found. In

contrast, it is a straightforward problem to find all solutions in xI(0) using
interval methods; and it is trivially easy to computationally determine that

all solutions in xI(0) have been found. We describe such interval methods
in this chapter.

If a given problem has a large number of isolated solutions, it, of course,
requires a large amount of time for any method to compute them all.

The nature of interval methods is such that it appears that they must
always converge globally. However, there is no proof as yet. In practice,
they “fail” only in taking too much computing time. It has been proved that
convergence is global for the one-dimensional case. See Theorem 9.6.2.

Watson (1986) states that “the raison d’être for homotopy methods is
global convergence”. Therefore, the (presumed) global convergence of

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

interval methods is sufficient motive for their use. The reason interval
methods were originally introduced, however, was to provide (as they do)
guaranteed bounds on the set of all solution(s).

Interval Newton methods can be said to have a raison d’être for any of
the three reasons given: They find all solutions, they (apparently) converge
globally, and the computed bounds are guaranteed to be correct. We see
below (especially in Section 11.15) that they have other valuable properties
as well. For example, they can (despite rounding errors) prove the existence
(or nonexistence) and uniqueness of a solution.

11.2 DERIVATION OF INTERVAL NEWTON METHODS

Let x and y be points in a box xI. Suppose we expandeach component fi

(i = 1, · · · , n) of f by one of the procedures given in Chapter 7. Combining
the results in vector form, we have

f (y) ∈ f (x) + J
(
x, xI

)
(y − x). (11.2.1)

We refer to J as the Jacobian of f although it need not be formed using
differentiation. A more efficient method is obtained if it is formed using
slopes. See Section 7.7.

If y is a zero of f , then f(y) = 0 and we replace (11.2.1) by

f (x) + J(x, xI)(y − x) = 0. (11.2.2)

Let x be fixed. Define the solution set of (11.2.2) to be

s =
{

y

∣
∣
∣
∣

f (x) + J(x, x′)(y − x) = 0
x′ ∈ xI.

}

This set contains any point y ∈ xI for which f(y) = 0. We could use the
notation {s} to emphasize the solution set is not a point, but we choose not
to do so.

The smaller the box xI, the smaller the set s. The object of an interval
Newton method is to reduce xI until s is as small as desired so that a solution
point y ∈ xI is tightly bounded. Note that s is generally not a box. (See
Section 5.3).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Suppose we solve the linear equation (11.2.2) using a method such as
described in Chapter 5. Let yI denote the resulting box. Then yI contains
the solution set s.

For convenience, we write the suggestive relation

f (x) + J(x, xI)(yI − x) = 0. (11.2.3)

We discussed in detail in Section 5.2 why this relation is only suggestive.
It is because even when yI is a solution of (11.2.3), if we compute the
left member of (11.2.3), the result is generally not the zero vector. The
exception is when x is a zero of f and yI = x.

For future reference, it is desirable to have a distinctive notation for the
solution of (11.2.3). In place of yI, we use the notation N(x, xI), which
emphasizes the dependence on both x and xI.

From (11.2.3), we define an iterative algorithm of the form

f(x(k)) + J
(

x(k), xI(k)
) [

N
(

x(k), xI(k)
)

− x(k)
]

= 0, (11.2.4a)

xI(k+1) = xI(k) ∩ N(x(k), xI(k)
) (11.2.4b)

for k = 0, 1, 2, · · · where x(k) must be in xI(k). A good choice for x(k) is

the center m(xI(k)
) of xI(k)

. However, in Section 11.4, we consider how to
compute a better choice.

See Alefeld (1999), for example, for a discussion of a method in which
the linear system (11.2.4a) is solved by an interval form of Gaussian elim-
ination.

In some procedures, the components of N(x(k), xI(k)
) are computed

sequentially. The intersection in (11.2.4b) is computed as soon as a new
component is obtained so that components computed later are narrower
intervals.

In what follows, we sometimes omit the superscripts from terms in
(11.2.4).

In Section 5.6, we noted that to obtain satisfactory results when comput-
ing the solution of a system of linear equations, it is generally necessary to
precondition the system. To do so in the present case, we multiply (11.2.3)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

by an approximate inverse B of the center Jc of J(x, xI). We discuss another
way to precondition in Section 11.9.

If the matrix Jc is singular, we can (implicitly) modify it slightly so that
the modified form is nonsingular. We describe a way to do so in Section
5.11.

Other alternatives when Jc is singular are either to begin again with a
new point x of expansion, or to split the box xI into subboxes and apply the
method to each subbox separately. In either case, we hope the new Jc is
nonsingular.

Denote

M(x, xI) = BJ(x, xI) and rI (x) = −BfI (x) . (11.2.5)

In place of (11.2.4), we can write (temporarily reintroducing superscripts)

M(x(k), xI(k)
)
[

N(x(k), xI(k)
) − x(k)

]
= rI

(
x(k)

)
(11.2.6a)

xI(k+1) = xI(k) ∩ N(x(k), xI(k)
)

(11.2.6b)

(k = 0, 1, 2, · · ·)
As before for (11.2.4b), the intersecting in (11.2.6b) is done for a given

component as soon as it is computed.
We frequently make reference to the interval Newton method in which

we solve (11.2.6a) using a step of the Gauss-Seidel method described in
Section 5.7. We write the iteration in succinct form by dropping the super-

script k and letting x′ and xI′ denote x(k+1) and xI(k+1), respectively. We also

replace M(x, xI) by MI. The iteration for the i-th element of N(x(k), xI(k)
)

is simply denoted by

Ni = xi + 1

MI
ii



Ri −
i−1∑

j=1

MI
ij (X

′
j − xj) −

n∑

j=i+1

MI
ij (Xj − xj)



 ,

X′
i = Ni ∩ Xi (11.2.7)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Note that computing Ni can be regarded as an application of hull consistency
to the i-th equation of the preconditioned system.

In practice, we do not complete the application of a step of the Gauss-
Seidel method if all the diagonal elements of MI contain zero. Note that
these elements occur in the denominator or (11.2.7). If all the diagonal
elements of MI contain zero, it is likely that in (11.2.7) the quantity in
square brackets contains zero for every value of i = 1, · · · , n. In this case,
Ni = [−∞, ∞] for all i = 1, · · · , n and thus xI′ = xI. That is, no progress
is made in applying a step of the Gauss-Seidel method.

If at least one diagonal element of MI does not contain zero, we apply
the Gauss-Seidel method. When doing so, before other values of i, we solve
for Ni for those values of i for which 0 /∈ Mii . This is because Xi might
be reduced for the former (but generally not for the latter) values of i. The
latter might produce an exterior interval (that is, the interval [−∞, ∞] with
a gap removed). We ignore such gaps during the Gauss-Seidel step unless
their intersection with Xi is empty or a single finite interval. However,
information about such gaps is saved for later use if a box is to be split. See
Section 11.8.

We sometimes refer to the Krawczyk method; but we do not use it
because the Gauss-Seidel method is more efficient. To describe it we define
the matrix PI = I − MI. The iteration is

Ki = xi + Ri +
i−1∑

j=1

PI
ij (X

′
j − xj) −

n∑

j=i

PI
ij (Xj − xj),

X′
i = Ki ∩ Xi. (11.2.8)

This is actually an improved version of the Krawczyk method due to
Hansen and Sengupta (1981). In the original version, intersecting is done
only after all new components are computed.

11.3 VARIATIONS OF THE METHOD

The ways in which N(x(k), xI(k)
) is computed from (11.2.4a) or (11.2.6a)

and the ways in which J is defined distinguishes the various interval Newton

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

methods. In this section, we concentrate on variations of the former kind.
Some variations attempt to bound the solution set s as sharply as possible

each time (11.2.6a) is solved. Others do not. We distinguish between
methods by defining the following types:

Type I: Equation (11.2.6a) is solved as sharply as possible in each iteration.

Type II: Equation (11.2.6a) is solved to obtain bounds on its solution set;
but the bounds are not sharp, in general.

Type III: A method of type I or a method of type II (or both) is used in each
iteration depending on criteria designed to enhance overall efficiency.

A type I method generally uses fewer iterative steps to obtain a bound
of a given tolerance on a solution point. An example of a type I method is
one in which the hull method of Section 5.8 is used to solve (11.2.6a).

A type II method generally uses more steps of a simpler nature. There-
fore, the work per iteration is less. Examples of type II are those using
Krawczyk’s method (11.2.8) or the Gauss-Seidel method (11.2.7) to solve
(11.2.6a).

We discuss a type III method in Section 11.12.
When we evaluate the real vector function f (x) at the point x, we

use outwardly rounded interval arithmetic and denote this fact by writing
f I (x). Assume that the resulting box is of “reasonably small” width. That
is, assume that rounding and dependence do not produce pathologically
large bounds. Assume, also, that f does not depend on any parameter that
enters as a wide interval. Then any interval Newton method of any type
produces bounds on s that become tight as the width of xI becomes small.

Note that the solution set s of (11.2.3) becomes smaller as the current
box xI becomes smaller, and the box to which the interval Newton method
is applied gets progressively smaller as the algorithm progresses. In the
early stages in solving a system, there is little point in bounding s sharply.

The first interval Newton method was due to Moore (1966). It is of
type I; but a single step does not achieve as much progress as later variants.
Because we wish to refer to it later, we now describe Moore’s original
algorithm. It uses (11.2.4) rather than (11.2.6).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Let x = m(xI) and assume J(x, xI) in (11.2.4a) does not contain a
singular matrix. Let V(x, xI) be an interval matrix containing the inverse
of every matrix contained in J(x, xI). Then the solution of (11.2.3) is
contained in the vector NM(x, xI) where

NM(x, xI) = x − V(x, xI)f I (x) (11.3.1)

The first procedure, which does not sharply bound s, was introduced
(independently) by both Kahan (1968) and Krawczyk (1969). It is given by
(11.2.8). It is commonly called the Krawczyk method and has been studied
thoroughly. For example, see Alefeld (1999), Moore (1979) and Neumaier
(1990).

In Moore’s method the interval matrix V(x, xI) in (11.3.1) is computed
using interval Gaussian elimination. This can fail because of division by
an interval containing zero. At the time of inception, the Krawczyk method
was an important development because it avoided applying Gaussian elim-
ination to an interval matrix. In fact, the Krawczyk method avoids solving
any set of interval linear equations. Instead, only a real (i.e., noninterval)
matrix inverse is computed. This was the motivating factor for its introduc-
tion. For a recent discussion of the Krawczyk method, see Alefeld (1999).

A minor weakness of the Krawczyk and Gauss-Seidel methods is that
even if x∗ is a zero of f so that f(x∗) = 0, the solution of (11.2.6a) does not
yield a result precisely equal to the degenerate box x∗. Instead, a nondegen-
erate box containing x∗ is produced. Partly for this reason, these methods
are not as rapidly convergent as some other interval Newton methods.

Hansen and Sengupta (1981) noted that the Gauss-Seidel method is
more efficient than the Krawczyk method. See also Hansen and Green-
berg (1983). Neumaier (1990), discusses the Gauss-Seidel and Krawczyk
methods in the form in which intersecting is done only after all new compo-
nents have been computed. He notes (page 177) that in this form N

(
x, xI

) ⊂
K
(
x, xI

)
whereNi, the elements of N

(
x, xI

)
, are given by Equation (11.2.7)

and Ki, the elements of K
(
x, xI

)
, are given by (11.2.8). Therefore, be-

tween the two methods, the Gauss-Seidel method is preferred.
For variations of algorithms using the Gauss-Seidel method, See Hansen

and Sengupta (1981) and Hansen and Greenberg (1983).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Shearer andWolfe (1985a, 1985b) give an improved form of Krawczyk’s
method that they call the symmetric form. They solve the Krawczyk for-
mula for new interval variables in their natural order. Before recomputing
the Jacobian, they again solve the Krawczyk formula. This time, however,
they solve for the variables in reverse order. This same symmetric approach
can be used to solve (11.2.6a) using the Gauss-Seidel method.

The best available method for solving the preconditioned equation
(11.2.6a) is the “hull method” of Section 5.8. It produces the exact hull of
the solution set of (11.2.6a). However, it fails if the coefficient matrix is
irregular, see Section 5.8.2. In this case, we use the Gauss-Seidel method.

11.4 AN INNER ITERATION

In this section, we describe an “inner iteration” that has been used in the
past to improve the convergence of interval Newton methods. It can be used
in the way described. In Section 11.4.1, we describe an alternative way to
apply an inner iteration. We prefer the latter form. We use this alternative
form in the algorithms given in Section 11.12 and 11.14.

The purpose of an inner iteration is to find an approximation for a
solution of f = 0 in the current box xI. This approximation can be used as
the point of expansion x in (11.2.1). The closer x is to a solution point of
f = 0, the smaller the solution set of (11.2.6a).

Later in this section, we describe an inner iteration that generally ob-
tains a point x ∈ xI where ||f (x) || is smaller than at the center of xI. The
expectation is that by obtaining this better point of expansion, we require
fewer iterations of the main algorithm. This means that fewer evaluations
of the Jacobian are required. Therefore, less overall computation is re-
quired to solve the system of nonlinear equations. This has been verified
by experiment. For example, see Hansen and Greenberg (1983).

In Section 11.2, we note that the first step in solving (11.2.3) is to
multiply by an approximate inverse B of the center of the coefficient matrix
J(x, xI). Hansen and Greenberg (1983) pointed out that since B is available,
we can use it to perform a real Newton step (or steps) to try to obtain a better
approximation for a zero of f than the center m(xI) of xI.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The inner iteration is

z(i+1) = z(i) − Bf(z(i)) (i = 0, 1, · · ·). (11.4.1)

The initial point z(0) can be chosen to be the center of the current box. At
the final point, f is as small or smaller in norm than at z(0). The final point
is used as the point of expansion x in (11.2.1). This final point must be in
xI so that the expansion (11.2.1) is valid for the ensuing interval Newton
step using xI.

The iteration is discontinued if z(i+1) is outside xI. Suppose this is the
case. Let z′ denote the point between z(i) and z(i+1) where the line segment
joining these two points crosses the boundary of xI. If ||f(z′)|| < ||f(z(i))||,
we choose z′ as our approximation for a zero (and hence as our point of
expansion). Otherwise,we choose z(i). The vector norm we use in this book
is

||f || = max
1≤j≤n

|fj |.

The inner iteration is also stopped if ||f(z(i+1))|| > ||f(z(i))||. In this
case, we let x = z(i). Otherwise, the iteration (11.4.1) is stopped after three
steps and we set x = z(3). Further iteration might converge to a zero of f .
However, the convergence rate is only linear if B is fixed. Hence, it is not
efficient to perform too many iterations.

It is more important to have f (x) small when solving (11.2.6a) using
either the hull method or Gaussian elimination than using a step of the
Gauss-Seidel method. This is because the former two methods yield con-
vergence in one step of (11.2.6a) if f (x) = 0 (and exact interval arithmetic
is used). A Gauss-Seidel step does not.

Therefore, a different number of steps using (11.4.1) can be used de-
pending on which method is used to solve the linearized system (11.2.3).
In the algorithm given below in this section, we have used the same upper
limit (i.e., 3) on the number of inner iterations using (11.4.1).

The amount of work to do the inner iteration is small compared to that
required to compute J(x, xI) and B and then to solve the preconditioned
linear system (11.2.6a). Therefore, the inner iteration is worth doing even

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

when its effect on convergence is small. However, its use depends on having
computed B for use in preconditioning.

We now list the steps of the inner iteration. All steps are done in ordinary
rounded arithmetic. That is, interval arithmetic need not be used. Let the
current box be xI.

0. Initialize:

(a) Set z(0) = m(xI).

(b) Set i = 0.

1. Compute z(i+1) using (11.4.1).

2. If z(i+1) ∈ xI, go to Step 3. Otherwise, go to Step 5.

3. If ||f(z(i+1))|| < ||f(z(i))||, go to Step 4. Otherwise, set x = z(i) and
go to Step 6.

4. If i < 3, replace i by i+1 and go to Step 1. Otherwise, set x = z(i+1)

and go to Step 6.

5. Let z′ denote the point where the line segment joining z(i) and z(i+1)

crosses the boundary of xI. If ||f(z′)|| < ||f(z(i))||, set x = z′.
Otherwise, set x = z(i).

6. If xi is not in Xi for some i = 1, · · · , n, replace xi by the nearest
endpoint of Xi . (Note that rounding might have been such that x is
not in xI). Return to the main program.

The first time Step 1 is used in this procedure, we have z(0) = m
(
xI
)

and we want Bf(z(0)). Note, that −Bf(z(0)) is the vector rI (see Equation
(11.2.5)) already computed in the algorithm in Section 11.12. That is, we
need not recompute f and Bf the first time Step 1 is used.

The same kind of inner iteration can be performed in the one-dimensional
interval Newton method described in Chapter 9. However, in this case, the
derivative of f (i.e., the one-dimensional Jacobian) generally takes about
the same amount of computation to evaluate as is required to evaluate f .
Hence, there is little motive to do the inner iteration.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

11.4.1 A POST-NEWTON INNER ITERATION

In the previous section, we describe an inner iteration that is used during
an interval Newton step. In this section we describe how an inner iteration
can be used after an interval Newton step. It is designed to improve the
performance of a subsequent interval Newton step rather than the current
one.

If all the arguments of all the elements of the Jacobian are chosen to be
intervals, then the method of the previous section is preferred to the one we
now describe. This is because (in this case) changing the point of expansion
does not change the Jacobian. However, in practice, one implements the
Jacobian so that some arguments of some of its elements are real rather
than interval. This is necessarily the case if we use a slope expansion (see
Section 7.7). It is also desirable when using a Taylor expansion. (See
Section 7.4.)

Suppose we compute the Jacobian by expanding about a particular point
such as the center of a box. Suppose we use Jacobian data to determine
a point nearer a solution of the given system. If we change the point
of expansion to this new point, we change the Jacobian and it must be
recomputed if it is to be used in the current interval Newton step. Therefore,
the benefit of having a good point of expansion is offset by having to perform
this recomputation.

In this section, we advocate an alternative method. In this method, we
use an inner iteration after the interval Newton step is performed. Sup-
pose the inner iteration using the real matrix B obtains a point xB as an
approximate solution to a system of equations. When a subsequent interval
Newton step is applied to a box containing xB , we use xB as the point of
expansion over the box. Therefore, the Jacobian need be computed only
once to perform a given Newton step.

This point xB is generally obtained by an inner iteration in a larger box
than the current one. It might seem reasonable to evaluate f at the center of
the current box to see if this value is smaller in norm than the value at xB .
If so, the Jacobian can be expanded about this center. We do not do this.

To use this procedure, one must store xB along with the box in which it
was obtained. If the box changes, we keep xB only if it is contained in the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

new box. If the box is split, we store the point xB only with the one subbox
containing it.

11.5 STOPPING CRITERIA

In this section, we consider how to terminate an interval Newton algorithm.
Termination procedures for interval methods are similar in some ways to
those for noninterval methods. However, they are distinctly different in
other ways. For a discussion of termination criteria in the noninterval case,
see, for example, Dennis and Schnabel (1983).

We begin this section on stopping criteria by discussing some relevant
concepts.

Suppose we evaluate f at a point x using rounded interval arithmetic.
Instead of obtaining the noninterval vector f (x), outward rounding causes
us to get an interval vector f I (x) containing f (x) . Let x∗ be a zero of f .
Because of rounding errors, there is a set of points xs about x∗ for which
0 ∈ f I (x) for all x ∈ xs . Let xI∗ denote the smallest box containing this set.

A reasonable convergence criterion is to require that the interval New-
ton method produce a box that contains xI∗ and is a good approximation
for xI∗. Actually, we can generally compute a slightly better result because
information is used about the Jacobian and not just f . However, the extra
accuracy might require using expansion points on the boundary of the cur-
rent box that are not selected by the algorithm we give in Section 11.12.
In that algorithm, we make no special effort to improve on xI∗. Sometimes
the result is better and sometimes not. For an illustrative example in the
one-dimensional case, see Section 9.7.

For simplicity, we discuss termination as if our goal is to compute a good
approximation for xI∗. We discuss tolerances that a user might prescribe
to save work by causing termination before xI∗ is closely approximated. If
these tolerances are too small, the algorithm reverts to approximating xI∗

to prevent fruitless computation.
In Section 9.4, we noted that if, in the one dimensional case, an interval

X contains zero, then 1 ≤ w(X)/|X| ≤ 2. Therefore, care has to be taken
when using a relative stopping criterion. The condition w(X)/|X| ≤ ε can
never be satisfied if ε < 1 and 0 ∈ X.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We might use a relative criterion of this form in the multidimensional
case (and a user might choose to do so). However, a solution vector xI∗

might have a component X∗
i that is zero. If this component of a bounding

box xI is the widest component of the box, a relative criterion with ε < 1
cannot be satisfied.

It is possible to use a procedure in which a separate criterion is used for
each component of a box. A component containing zero can use (say) an
absolute criterion. This has the added benefit of permitting unequal scaling
of variables to be taken into account.

We take the simple approach of using an absolute criterion for the box
as a whole. Thus, we define:

Criterion A:

w(xI) < εX for some εX > 0. (11.5.1)

As noted in Section 9.4, care must be taken when choosing εX for use in an
absolute criterion of this form.

A user might want to have ||f (xI
) || small for all x in a final box xI

bounding a zero of f . Therefore, we define:

Criterion B:

||f(xI)|| < εf for some εf > 0. (11.5.2)

CriterionA corresponds to the noninterval criterion that two successive
iterates be close together. The criterion in the noninterval case correspond-
ing to Criterion B is that an approximation (of uncertain accuracy) for
||f (x) || be small at a single point x.

In each step of the interval Newton method, the current box is either
substantially reduced in size1 (see Section 11.7) or split into subboxes.
Therefore, each remaining box is eventually as small as desired (subject to
wordlength limitation), so it is trivially easy to satisfy Criterion A.

1We often simply write: “reduced”.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The interval approach to solving systems of equations has a virtue that
is unavailable in the noninterval case: in practise, it is possible to determine
when εX has been chosen too small. If εX is too small, many boxes (each
satisfying Criterion A) are required to cover the set xI∗. Similarly, εf can
be chosen too small. Therefore, we wish to override Criteria A and B
when they are too stringent and try to approximate xI∗ instead.

Note, however, that a user might wish to map the solution region by
small boxes as “pixels”. This can be done by allowing Criterion A to
determine convergence.

The vector f(xI) is not computed by the Newton algorithm. Therefore,
extra effort is required to use Criterion B. However, extra information
results from its use. When Criterion B is satisfied for all final boxes, we
know that ||f (x) || < εf for all x in all final boxes. This information can
be useful.

Actually, it is not necessary to compute f(xI) directly. Instead, we can
reduce the effort (unless f is quite simple) by using the relation

f(xI) ⊂ f I (x) + J(x, xI)(xI − x). (11.5.3)

Since f I (x) and J(x, xI) are computed when performing a Newton step, the
only extra effort required to compute a bound on f(xI) is a matrix-vector
multiplication and a vector addition. Moreover, when w(xI) is small, this
method generally bounds the range of f over xI more sharply than directly
evaluating f(xI).

When we use the relation in (11.5.3) to bound f(xI), we use the already
computed J(x, xI) to obtain a new box xI′ in xI. Thus, we use f(xI′) ⊂
f I(x) + J(x, xI)(xI − x). Therefore, J(x, xI) has wider elements than the
correct Jacobian. As a result, the computed bound on f(xI′) is wider than
necessary. However, if we simply evaluate f(xI′), then dependence causes
widening so computed bounds are not sharp in either case.

To see if Criterion B is satisfied, another option when evaluating f(xI)

is to use hull consistency to bound f(xI) as described in Section 10.10. The
box might be reduced in the process.

In our termination procedure, we check whether CriterionA is satisfied
before checking to see if Criterion B is satisfied. If Criterion A is not

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

satisfied, we continue iterating on the current box. Hence, we often avoid
evaluation of f(xI) because Criterion B is not checked in this case.

We want to have the option of stopping only when we have the best (or
near best) possible result with the numerical precision used. That is, we
want the option to stop when (and only when) we have a good approximation
for xI∗. This is especially desirable when one or both of the tolerances εX

and εf are chosen too small. We now discuss how this can sometimes be
done.

Recall that to compute a new interval Newton iterate, we solve

f (x) + J(x, xI)(y − x) = 0.

(See (11.2.4a).) To precondition the system, the first step in solving this
equation is to multiply by an approximate inverse B of the center of J(x, xI).

(See Sections 5.6 and 11.2.) The resulting coefficient matrix is M(x, xI) =
BJ(x, xI). We discuss another way to compute M(x, xI) in Section 11.9.

Assume that J(x, xI) is regular (i.e., does not contain a singular matrix).
Then the inverse B exists and M(x, xI) can be computed. If w(xI) is small,
then the interval elements of M

(
x, xI

)
are generally small in width and

M(x, xI) approximates the identity matrix.
For our current purpose, we are interested only in whether M(x, xI) is

regular or not. Below, we see that for another reason M(x, xI) is checked
for regularity. Therefore, no extra computation is required to make this
check for our current purpose.

Note that regularity of M(x, xI) assures that any zero of f in xI is simple.
In this case, we are able to decide when xI approximates xI∗. We use

Criterion C: 0 ∈ f I (x) , M(x, xI) is regular, and N(x, xI) ⊃ xI.

The condition 0 ∈ f I (x) assures that x is at or near a zero of f . The
condition N(x, xI) ⊃ xI indicates that the interval Newton step is unable to
reduce xI. When M(x, xI) is regular, the other two conditions of Criterion
C assure that xI approximates xI∗.

In our algorithm, if Criterion C is satisfied, we stop trying to reduce
xI. We do not require that Criteria A and B be satisfied in this case. If the
tolerance εX and/or εf are too small and if we do not give precedence to

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Criterion C, a box approximating xI∗ might be split into many subboxes, all
of which must be output. The “solution” is their union. Letting Criterion
C dominate the other criteria, less work is done, because the algorithm
tends to return a single box approximating xI∗.

If xI contains a multiple zero (or more than one isolated zero) of f , the
Jacobian J(x, xI) is irregular. Therefore, M(x, xI) is also irregular. In this
case, we need a criterion different from Criterion C to decide when xI

approximates xI∗. This case is more difficult. However the “difficulty” is
really only a nuisance. Consider

Condition D: 0 ∈ f I (x) , N(x, xI) ⊃ xI, and M(x, xI) is irregular.

All we really need is a condition that assures that xI is not large when
Condition D holds. However, a choice must be made on how to proceed.
We describe our choice in this section. When M(x, xI) = BJ(x, xI) is
regular, we can determine the hull of the solution set of the preconditioned
system

Bf (x) + BJ(x, xI)(y − x) = 0

by the hull method given in Section 5.8. When M(x, xI) is irregular, this
method is not applicable; and neither is Gaussian elimination. Therefore,
we use the Gauss-Seidel method described in Section 5.7. A difficulty of
the Gauss-Seidel method (from the perspective of termination) is that even
when 0 ∈ f I (x) and xI is large, it is possible to have N(x, xI) ⊃ xI.

Suppose that in our algorithm, we have applied hull and box consisten-
cies to a box (say yI) and have obtained the box xI to which the Newton
method is applied. Suppose yI �= xI. Then the consistency methods have
reduced yI. In this case, we assume xI is not as small as it can be made to
be, even if the Newton method fails to reduce it.

In our algorithm, we rely upon Criteria A and B to stop iteration on
a box for which Condition D holds. However, we now point out some
alternatives that can be used, that we have not yet tried.

We can compare ||f (x)|| with ||f (xI)|| for x ∈ xI. Note that ||f (xI)||
approaches ||f (x)|| as the width of xI approaches zero with x ∈ xI.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We can attempt to find a point x in xI for which 0 /∈ f I (x) . To do so,
we can evaluate f at a few corners of xI. If such a point can be found, then
xI might not be as small as we want it to be.

An unsatisfactory alternative is to accept a box xI when w(xI) is less
than some relatively large tolerance (and Condition D is satisfied), Then
the user can examine the output, reset the tolerance on w(xI) to a smaller
value, and continue iterating.

It is unlikely that Condition D holds unless xI approximates xI∗. It is
rare to have 0 ∈ f I (x) except when the smallness of xI forces x to be near
a zero of f .

Note that boxes near a solution can satisfy the convergence criteria but
not contain a zero of f . This is rare for well conditioned simple zeros, but
is common for multiple zeros. Such a “solution” box generally abuts or is
near a box that actually contains a zero.

Note, also, that prescribing a value of εX in Criterion A does not
assure that the location of a zero of f is bounded to within εX. First of all,
it might not be possible with the numerical precision used to isolate the
zero that sharply. The box xI∗ (described above) containing the region of
uncertainty might be of width larger than εX. In this case, we approximate
what is achievable with the given precision; not what is requested.

Also, the algorithm might return a cluster of two or more abutting boxes
each of width less than εX. The smallest box containing such a cluster might
exceed εX in width. To isolate a given zero within a box of a given size,
one can choose εX slightly smaller than the desired value. This advise is
meaningless if εf is chosen so small that function width causes the width
of a final box to be even smaller than εX. Moreover, a solution box’s
width is often smaller than εX in width because a Newton method tends to
“overshoot the mark”. Similarly, if εX is small and εf is large, ||f(xI)|| is
much smaller than εf for each final box xI.

11.6 THE TERMINATION PROCESS

In this section, we describe two termination procedures based on the anal-
ysis of Section 11.5. Assume the tolerances εX and εf have been specified.
Let xI denote the box to which a Newton step is applied. The result can be

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

more than one box. Let xI′ denote a resulting box although it might not be
the only one.

Our first process causes termination when Criteria A and B are sat-
isfied. It is useful when the tolerances are chosen “relatively large”. In
this case, processing stops early and computing effort is relatively small.
The second process forces the algorithm to produce the best (or near best)
possible result for simple zeros.

The termination process for the first case involves the following steps:

1. If Criteria A and B of Section 11.5 are satisfied, accept xI′ as a final
result. Otherwise, go to Step 2.

2. If Criterion C of Section 11.5 is satisfied, accept xI′ as a final result.
Otherwise, go to Step 3.

3. Continue processing xI′.

The steps for the second case are as follows:

1. If Criterion C is satisfied, accept xI′ as a final result. Otherwise, go
to Step 2.

2. If the preconditioned coefficient matrix M(x, xI) is regular, continue
processing the box xI′. Otherwise, go to Step 3.

3. If Criteria A and B are satisfied, accept xI′ as a final result. Other-
wise, go to Step 4.

4. Continue processing xI′.

Note that our termination processes do not take special measures when
Condition D of Section 11.5 holds. In this case we assume that the toler-
ances in Criteria A and B are chosen adequately to cause termination in a
suitable manner.

It might happen that two or more abutting boxes are output as final
results and it is their union that contains a solution (or multiple nearly
coincident solutions). However, some of these output boxes might not
contain a solution.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

11.7 RATE OF PROGRESS

If a box is not sufficiently reduced by a Step of our algorithm, we split the
box into two or more subboxes and apply the algorithm to each subbox
separately. A Newton algorithm is more efficient when applied to a small
box than to a large one. This is partly because Taylor expansions are better
approximations to functions over small regions. It is also partly because
the effect of dependence is less for small boxes.

We need a criterion to test when a box is “sufficiently reduced” in size
during a Step or steps of our algorithm. We derive a criterion for sufficient
reduction in this section. The purpose of the criterion is to enable us to
decide that it is not necessary to split a box. Instead, any procedure can be
repeated that has sufficiently reduced the box.

Let xI denote a box to which the algorithm is applied in a given step.
Assume that xI is not entirely deleted by the algorithm. Then either xI or a
subbox, say xI′, of xI is returned. It might have been determined that a gap
can be removed from one or more component of xI′. If so, we can choose
to split xI′ by removing the gap(s). We discuss this case subsequently. For
now, assume we ignore any gaps.

We could say that xI is sufficiently reduced when for some i = 1, · · · , n,

we have

w(x ′
i) < α w(xi) (11.7.1)

for some constant α where 0 < α < 1. But suppose xi is the narrowest
component of xI.Then this condition is satisfied when there is little decrease
in the distance between extreme points of xI.

We could also require that

w(xI′) < β w(xI) (11.7.2)

for some constant β where 0 < β < 1. In this case, we compare the
widest component of xI with the widest component of xI′. But even if every
component of xI except the widest is reduced to zero width, this criterion
says that insufficient progress has been made.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We avoid these difficulties by requiring that for some i = 1, · · · , n, we
have

w(xi) − w(x ′
i) > γ w(xI) (11.7.3)

for some constant γ where 0 < γ < 1. This assumes that at least one
component of xI is reduced in width by an amount related to the widest
component of xI.

We choose γ = 0.25. Thus, we define

D = 0.25 w(xI) − max
1≤i≤n

{w(xi) − w(x ′
i)} (11.7.4)

We say that xI is sufficiently reduced if D ≤ 0.

When, according to the criterion, a box is not sufficiently reduced by
one “pass” through our algorithm, we split the box into subboxes and apply
the algorithm to each subbox separately. A pass though the main algorithm
includes application of hull and box consistencies and perhaps application
of the interval Newton method. In the next section, we describe how split-
ting is done. When a box is sufficiently reduced, we do not split it. Instead,
we try to reduce it further by reapplying the algorithm.

We also need another measure of rate of progress. Our overall algorithm
for solving systems of nonlinear equations uses hull consistency, box con-
sistency, and two forms of Newton’s method. We need to know whether it
is better to emphasize the use of consistency methods, or a Newton method.

Early in the solution process when the current box is large, a Newton
method might make little or no progress reducing the box. If hull consis-
tency makes sufficient progress (i.e., if D ≤ 0), we might let it continue
to be used without applying a Newton step. But when the box is small,
a Newton method generally exhibits quadratic convergence (see Theorem
11.15.8 below) and can be much faster than hull consistency.

We wish to avoid repeated use of hull consistency when a Newton
step might be more efficient. The computational effort to apply a Newton
step rises faster as a function of the number n of variables than does hull
consistency. Therefore, we arbitrarily limit the number of hull consistency
applications to n before we apply a Newton step. Recall that n is the number
of variables in the system being solved.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We also generally apply a Newton step when hull consistency (and box
consistency) make insufficient progress.

On the other hand, if a Newton step makes exceptionally good progress,
we repeat it. In this case, we use hull and box consistencies in only a limited
way. See Section 11.9. We repeat the Newton step when it reduces the width
of the box by a factor of at least 8. That is, we repeat a Newton step if

w(xI′) ≤ 0.125 w(xI). (11.7.5)

We do not use this criterion form (see (11.7.2)) for determining when
progress is barely sufficient. However, we use it in the present case when
it indicates that progress is more than just sufficient.

11.8 SPLITTING A BOX

Our algorithm for solving a system of nonlinear equations is composed of
several procedures. Suppose we have applied each of these procedures to
try to find a solution in a given box and the box is not sufficiently reduced.
In this case, we split the box into subboxes. We then apply the procedures
to these smaller subboxes. Actually, we sometimes split when we have
used some, but not all, of the procedures in the algorithm.

In this section, we consider how to split a box when the procedures
for reducing a box are making insufficient progress. If a procedure has
produced a gap in one or more components of the box, this provides an
optional way to split. In fact, if a gap occurs, it can be worthwhile using it
to split the box even when progress in reducing the box is sufficiently rapid.
We discuss gaps below in this section. For now, assume no gap exists.

Suppose that we have completed the part of our algorithm that tries to
reduce a box xI, and that the result is xI′. Assume that D > 0 where D is
given by (11.7.4). Then xI has not been sufficiently reduced; so we wish to
split xI′.

Suppose we split each interval component of a box of n components into
two subintervals. Then 2n subboxes are generated. This is generally too
many new boxes even for moderate values of n. Therefore, if the number n

of variables is ≤ 3, we split each component of xI′. If n > 3 we sometimes

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

split just three components so that eight subboxes are generated; and we
sometimes split so that n + 1 subboxes are generated.

Suppose we have made a pass through our algorithm (see Section 11.12)
for solving a system of nonlinear equations; and it specifies that splitting
should be done. How we split depends upon whether the Newton method
was used in the given pass. This is because in applying the Newton method,
we obtain information that is useful in deciding how to split.

Let us first consider the case in which the Newton method is not used.
in a particular pass. Instead, we use only consistency methods. We split
when the consistency methods do not make sufficient progress in reducing
a box. A significant fact is that consistency methods require much less
effort to apply than the Newton method. We can split so as to produce
only a few new subboxes. If the splitting does not enable the next pass
through the algorithm to make good progress, the original application of
the consistency methods can have wasted only a relatively small effort.

We split only three interval variables defining the box. This produces
eight new subboxes. We split the three widest components of the box. This
can be a poor choice because it does not take scaling into account. We rely
upon a case in which we have applied a Newton method before splitting to
help us do splitting in a better way.

The way we split when the Newton method has been used requires some
introductory discussion. We first discuss how we decide the importance of
splitting a particular component of a box. We then consider how the splitting
is done.

When applied to a box xI, assume the algorithm produces a box xI′ that
we wish to split. We wish to split because xI′ differs very little from xI. We
would like to have the Jacobian of the nonlinear system f evaluated over the
box xI′ for use in the splitting procedure. Rather than compute it, we use
the Jacobian J(x, xI) that was evaluated during the Newton process. This
differs little from J(x, xI′) because (by assumption) xI′ differs little from
xI. Moreover, we need only a crude estimate of the Jacobian.

Knowing J(x, xI), we can easily compute

Tj = w(X′
j)

n∑

i=1

|Jij (x, xI)|. (11.8.1)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

It is clear that the system f depends more strongly on xj than on xk over xI′ if

Tj > Tk In this case, we prefer to split the j -th component of xI′ rather than
the k-th. This criterion is crude because we are using a single number, Tj ,
to represent behavior of an entire system. The criterion is especially crude
because when determining J(x, xI), we select some arguments of elements
of J(x, xI) to be real and some to be interval. See Section 7.3. The choice
of which arguments are chosen to be real can affect the value of Tj .

Having determined which components we prefer to split, we now dis-
cuss the information that we use to decide how to split.

Ratz (1994) describes a splitting strategy that produces n+ 1 subboxes
(of varying sizes) of a given n dimensional box. Using his procedure, we
first split the box in half in a given component. We store one of the resulting
subboxes without splitting any other component. We split the remaining
subbox in half in one (different) component. We again store one portion
and repeat the process using the remaining subbox. In this way a splitting is
done in each dimension, but for a succession of smaller and smaller boxes.

Ratz compares this strategy with ones in which fewer subboxes are
produced that all have the same size. He considers a global optimization
method that uses a Gauss-Seidel step to solve the system of nonlinear equa-
tions formed by the gradient of the objective function. He gives numerical
evidence to show his strategy provides better overall efficiency than splitting
a few dimensions to obtain subboxes of equal sizes.

In Ratz’s procedure, each successive splitting divides a component of a
box in half. However, we use information about the Tj to split components
into portions of differing widths. We store the smaller portion and continue
to split the subbox with the larger portion of the component. We have noted
that Tj is a crude measure of how much f changes as xj changes over a box.
We now use an even cruder measure. We assume that

V =
[

n∑

i=1

T 2
i

]1/2

is a measure of how much f can change due to the combined changes in
x1, · · · , xn over the box. We would like to simply evaluate f over each

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

generated box, but before we split, we do not know the dimensions of the
boxes concerned. Functions other than V could be used, but using V is
convenient.

Assume we have ordered the variables so that

Tj ≥ Tj+1 (j = 1, · · · , n − 1) .

We use the following modification of Ratz’s procedure. We split X1 into
two unequal parts. We store the smaller resulting subbox and divide the
component X2 of the larger portion into two unequal parts. We repeat this
process until Xn−1 is divided. In the final step, we divide Xn into equal
halves. We save both of the two subboxes.

Note that Tj (j = 1, · · · , n) and hence V changes as the box changes.
We choose each splitting so that V is the same for all saved subboxes. Let
wi (i = 1, · · · , n) denote the width of the i-th component of the initial
box being subdivided. Let w′

i (i = 1, · · · , n) denote the width of the i-th
component of the subbox that is stored when the i-th component is split.
Let αi = w′

i/wi . It can be verified that V is the same for each box saved if

αn−1 = 1

2
+ 3T 2

n

8T 2
n−1

αk = 1

2

[

1 + αk+1(2 − αk+1)
T 2

k+1

T 2
k

]

(k = 1, · · · , n − 2)

Each αi, and thus w′
i (i = 1, · · · , n − 2) can be found by recurring back-

ward.
Suppose we are splitting a particular component of a box by the process

we have described. Since the component is not split in half, we must decide
whether to have the split occur in the lower half or the upper half of the
component.

We have no information concerning how well a Newton step will per-
form in each new subbox. In fact, since we use the Jacobian in deciding
how to split, it is reasonable to assume that a Newton step (which uses the
Jacobian) will be equally effective in any one of the generated subboxes.
However, the consistency methods (which do not use the Jacobian) provide
a small amount of guidance.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In Section 10.8, we argue that in some cases, the effectiveness of hull
consistency in reducing a component can be less if another component
contains zero. Moreover, we might have implemented hull consistency
so that it is more effective for boxes with large values of the variables.
Therefore, when splitting a component, we choose to store the portion that
has smaller values of the relevant variable. Additional subboxes will be
formed using the other portion and they will be subdivided in additional
splitting. If the component to be split is symmetric about zero, an arbitrary
choice can be made whether to split at a negative or a positive value.

Note that we could choose not to split a component whose width is less
than εX when there are components of width greater than εX. We do not
make this distinction. It might be necessary to split a narrow component
for the algorithm to reduce a wider one.

We now consider the case in which a gap has been produced in a com-
ponent, say xi of a box xI. That is, we have determined that no solution of
the system f (x) = 0 exists when xi is in a gap in xi. We want to split xI by
deleting the gap and remove such points from consideration.

There are reasons why we might not want to split xI using a particular
gap. First, there might be gaps in too many components. We have noted
that, whether using gaps or not, we sometimes split no more than three
components of a box.

Second, using a particular gap to do the splitting might be of little value.
For example, suppose the gap is quite narrow and occurs near an endpoint
of the component interval of xI. If we split xI using this gap, we merely
shave off a thin slice of xI as one of the two new subboxes.

Third, the gap might occur in a component of xI that is already much
narrower than the other interval components of xI. It is more important to
split a component xi for which Ti (as given by (11.8.1)) is large.

Fourth, more than one gap might have been generated in a given com-
ponent of xI. We use only one such gap.

Consider a component of xI that contains a gap. Let the component be
the interval [a, d] and let the gap be the open interval (b, c). Removing the
gap leaves the two subintervals [a, b] and [c, d]. We consider this gap to

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

be suitable for use in splitting xI if

min{c − a, d − b} ≥ 0.2 w(xI) (11.8.2)

Note that if the width of the gap is ≥ 0.2 w(xI), then (11.8.2) is satisfied.
In this case, we are willing to shave off a thin slice of xI because we also
delete a relatively wide gap. Any gap we discuss subsequently is assumed
to satisfy (11.8.2). If gaps exist that satisfy condition (11.8.2) for use in
splitting, their use takes precedence over simply splitting a component of
xI at a point. The parameter Tj given by (11.8.1) is used to select the gaps
to be used. That is, we do not simply use the widest gaps.

Suppose we are using the procedure given above in this section to split
in n dimensions. When a particular component is to be split and it contains
a gap suitable for splitting, we split using the gap rather than the computed
point. We store the smaller part and use the larger part for splitting as the
procedure prescribes. This does not alter the relative sizes of subboxes
formed subsequently by the procedure.

When solving an optimization problem using methods given in subse-
quent chapters, we sometimes use the splitting procedure described above.
In this case, the matrix J(x, xI) whose elements occur in (11.8.1) is the
Jacobian of the gradient of an objective function. In some constrained
problems, this Jacobian does not involve some of the variables defining the
box to be split. In this case, we proceed as follows:

Let SJ denote the set of indices of variables that occur in the definition
of J(x, xI). Let S0 denote the set of remaining variable indices.

We order all components of the box in order of decreasing width. If the
Jacobian has not yet been evaluated, we split the three leading components
in the list. If the Jacobian has been evaluated and the three leading compo-
nents all have indices in the set SJ , we use the above procedure to split all
the components with indices in SJ . If the index of at least one of the three
leading components in the list is in S0, we split only the three components
leading the list.

If parallel processors are available, each can have a copy of the interval
Newton algorithm. The initial box can be split before processing starts so
that each processor has a box to process. When any box is split, a resulting
subbox can be passed to an available processor. A processor becomes

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

available when it has completed its job by either deleting its box or adding
its final boxes to the set of possible solution boxes.

Not only does each processor tend to remain productive, but progress
is enhanced because a Newton method is more efficient when applied to
the smaller boxes produced by splitting. The presence or lack of available
processors can affect the decision of how many new subboxes to generate
by splitting.

We have specified that splitting is sometimes done in three dimensions.
However, when parallel processors are used and there is some danger of a
processors running out of boxes to be processed, it can be desirable to split
in more dimensions to provide more new boxes.

11.9 ANALYTIC PRECONDITIONING

We noted in Section 11.2 that we precondition the system

J(x, xI)(y − x) = −f (x) (11.9.1)

by multiplying by an approximate inverse B of the center of J(x, xI). This
tends to make the new coefficient matrix M(x, xI) = BJ(x, xI) diagonally
dominant. That is, preconditioning tends to make the i-th equation of
the system depend strongly on the i-th variable and weakly on the other
variables. However, if xI is a large box, the interval elements of J(x, xI)

are generally wide and M(x, xI) need not be diagonally dominant.
If the preconditioned linear system is diagonally dominant, then the i-

th equation (i = 1, · · · , n) of the preconditioned nonlinear system Bf (x)

depends strongly on the i-th variable and weakly on the other variables. We
use this fact by analytically forming this system and solving the i-th analytic
function [Bf (x)]i for the i-th variable. When we analytically precondition
f (x) we can reduce the effect of dependence by combining and cancelling
terms.

We can write a component

[Bf (x)]i = Bi1f1 (x) + · · · + Binfn (x)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

and/or its derivative in the best form to reduce dependence in its evaluation
with interval arguments. When a particular matrix B is determined, its
numerical elements can be substituted into this expression.

Whenever we apply a Newton step in our algorithm, we compute a
preconditioning matrix B. We use this matrix to determine Bf (x) . We
then apply hull and box consistencies to this preconditioned system. When
doing so, we solve the i-th (i = 1, · · · , n) equation for the i-th variable
only.

Hansen (1997a) describes a procedure in which the analytically pre-
conditioned function Bf (x) is expanded to obtain the matrix M(x, xI) =
BJ(x, xI). This generally yields narrower interval elements of M(x, xI) than
computing J(x, xI) and numerically multiplying by B. This analytic pre-
conditioning is of value if Gaussian elimination or a Gauss-Seidel step is
used to solve the linearized equations.

However, we prefer the hull method of Section 5.8 over Gaussian elim-
ination. When the hull method is used, the center of the coefficient matrix
must be the identity matrix or else the interval matrix elements must be
widened to achieve this condition. Unfortunately, if analytic precondi-
tioning is used, the center is not the identity matrix. Widening the matrix
elements might undo the gain obtained by analytic preconditioning. Ex-
periments are needed to determine if it is desirable to use analytic precon-
ditioning in conjunction with the hull method.

It is possible to use the following procedure. Compute B as indicated
above and analytically determine Bf . Evaluate the Jacobian of Bf and com-
pute an approximate inverse B′ of its center. Use B′ to precondition the
Jacobian of Bf . This produces a coefficient matrix whose center is the
identity matrix (if exact arithmetic is used); so the hull method can be
used effectively. This involves computing an extra Jacobian and an extra
preconditioner B′. The extra computing might not be warranted.

Note that analytic preconditioning involves non-numerical computing
that might not be readily available to a user. Its use can be bypassed with
little effect on the performance of our algorithm. So that it is clear how to
proceed without analytic preconditioning, we have inserted a note in the
algorithm steps in Section 11.13 (and in other algorithms in later chapters).

Frequently, there are cases in which use of analytic preconditioning

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

is not warranted. Consider the case in which each fi (i = 1, · · · , n) is a
function of only a few of the n variables. Each function resulting from
analytic preconditioning generally involves all n variables. This increased
function complexity reduces their utility. Thus, analytic preconditioning is
of value if each initial function involves all or most of the variables. It is of
diminishing value as there is a reduction of the number of variables upon
which each function depends

11.9.1 An alternative method

We now consider an alternative to the procedure described above in this
section. We believe this alternative to be preferable; but we do not have
enough practical experience to decide if this is true.

We introduce the procedure as follows. Recall that the preconditioning
matrix B is an approximate inverse of the center Jc of J(x, xI). That is
BJc = I. Using this fact, we can condition the system (11.9.1) by rewriting
it as

M′(x, xI)z = −f (x) (11.9.2)

where M′(x, xI) = J(x, xI)B and z = Jc(y − x). To distinguish this result
from the preconditioned case, we shall say that M′(x, xI) is a postcondi-
tioned form of J(x, xI). To solve this new system, we first solve for z and
then use the relation

y = x + Bz. (11.9.3)

This procedure does not seem to be as effective in practice as using
preconditioning. However, the conditioning in (11.9.2)is done numerically.
In the procedure described below, it is done analytically.

We now consider an analytically conditioned form of this procedure.
Recall that (11.9.1) is obtained from

f (y) = f (x) + J(x, xI)(y − x)

by assuming that y is a solution of f (y) = 0. Using (11.9.3), this relation
is

f(x + Bz) = 0. (11.9.4)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

When xI is a small box containing a solution of f = 0, postconditioning
causes the i-th component of equation (11.9.2) to depend strongly on zi and
weakly on the other components of z. Since this is true for the linearized
form (11.9.2), it is true for the original form (11.9.4). Therefore, we solve
the i-th component of (11.9.4) for zi (i = 1, · · · , n).

To solve, (11.9.4), we want initial bounds on z. They can be obtained
from (11.9.3) as zI = B(xI − x). After new bounds zI′ are obtained, the
corresponding new bounds xI′ are obtained as xI′ = x + JczI′. The steps of
getting zI from xI and xI′ from zI′ each enlarge the bounding box because of
the “wrapping effect”. See Moore (1979) for a discussion of the wrapping
effect.

Earlier in this section, we considered the preconditioned equation Bf =
0. Note that each component of this vector equation is a linear combina-
tion of all the components of f and hence is generally quite complicated.
However, a component of (11.9.4) is a single equation but involves every
component of z. In the latter case, each component is likely to be much
simpler than in the former case. Therefore, the alternative method has sim-
pler equations to be solved but its effectiveness is reduced by the wrapping
effect.

11.10 THE INITIAL BOX

We have noted that the search for solutions to the system of nonlinear

equations is confined to a box xI(0)
. Generally, this box is specified by the

user. Actually the region of search can be a set of boxes. The boxes can be
disjoint or overlap. However, if they overlap, a solution at a point that is
common to more than one box is separately found in each box containing
it. In this case, computing effort is wasted.

If the user does not specify an initial box (or boxes), we use a “default
box”. Let N denote the largest floating point number that can be repre-
sented in the number system used on the computer. Our default box has

components x
(0)
i = [−N,N

]
for all i = 1, · · · , n. We assume that any

finite solution outside the default box is of no interest. To find any solution
outside the default box requires higher precision arithmetic.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Since we use extended interval arithmetic, it is possible to let the initial
box have components [−∞, +∞]. However, we assume that any solution
at +∞ or −∞ is uninteresting. Therefore finding one is a waste of effort.

A user can usually specify a smaller box than the default. The smaller
the initial box, the faster the algorithm can solve the problem.

11.11 A LINEARIZATION TEST

In an interval Newton method, we linearize a nonlinear system of equations
and solve the linear system. The linear system provides a good approxima-
tion to the nonlinear system over a box when the box is small. However,
the linear system is generally a poor approximation when the box is large.

Therefore, when solving a system of nonlinear equations, it is generally
more efficient to use other procedures or to split a box when the box is large.
In our algorithm, we defer use of a Newton method until other procedures
have reduced the size of a large box.

To determine whether a box is “large”, we use a test. We use similar
tests later in the book. In each case, we test whether certain functions should
be linearized over a given box. We call our tests “linearization tests”.

Assume we have applied a Newton method to a box xI; and assume
it uses (if applicable) the hull method of Section 5.8 to solve the linear
system. In so doing, we learn whether the preconditioned coefficient matrix
MI

(
x, xI

)
of the linearized (and preconditioned) system is regular. This

determines whether the hull method is applicable. If MI
(
x, xI

)
is irregular,

we regard the box xI as “too large”.

When solving a system of nonlinear equations, we often attempt to
apply a Newton step in this way. When a Newton step is applied to a box
xI, MI

(
x, xI

)
might be regular or irregular. We let wR denote the width of

the largest box for which MI
(
x, xI

)
has been found to be regular. We let wI

denote the width of the smallest box for which MI
(
x, xI

)
has been found

to be irregular.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In our algorithm to solve a system of nonlinear equations (see Section
11.12), we apply the Newton method to a box xI only if

w(xI) ≤ 1

2
(wR + wI). (11.11.1)

Before beginning to solve a given system in a box xI(0), we initialize by

setting wR = 0 and wI = w(xI(0)
). As the algorithm progresses and wR

and wI change, it might happen that wR becomes larger than wI . This does
not change our procedure. Note that (11.11.1) is not satisfied for the initial
box. Therefore, other procedures must reduce the width of the initial box
by at least a half before a Newton step is applied. If the initial box is already
“small”, this condition can be overridden.

If, in a given application of a Newton method, MI
(
x, xI

)
is irregular,

we can apply the Gauss-Seidel method to the preconditioned linear system.
If a Gauss-Seidel step sufficiently reduces (as defined using (11.7.4)) the
box to which it is applied, we regard the box as “small” just as if MI

(
x, xI

)

were regular. We update wR accordingly.

11.12 THE ALGORITHM STEPS

In this section, we list the steps of our interval Newton method. The al-
gorithm contains the procedures described earlier. Note that we refer to it
simply as a Newton method. However, it involves application of hull and
box consistencies and two forms of Newton methods.

The selected features of the algorithm were chosen using both exper-
imentation and theoretical considerations. There is undoubtedly room for
improvement. In particular our selection of various numerical parameters
was often made with too little experimental work to obtain the best values.
For example, it might be better to let some parameters vary with dimen-
sionality. Despite its shortcomings, the algorithm works well in practice.

We assume that an initial box xI(0) is given. We seek all zeros of f in
this box. However, as discussed in Section 11.10, more than one box can
be given. As the algorithm proceeds, it usually generates various subboxes

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

of xI(0). These subboxes are stored in a list L waiting to be processed. At
any given time, the list can be empty or contain several (or many) boxes.

The algorithm initially sets wR = 0 and wI = w(xI(0)
). See Section

11.11. If more than one box is input, wI is set equal to the maximum box
width.

The steps of the algorithm are to be performed in the order given below
except as indicated by branching. The current box is denoted by xI even
though it changes from step to step. We assume the tolerances εX and εf

discussed in Section 11.5 are given by the user.

0. Put the initial box(es) in the list L.

1. If the list L is empty, stop. Otherwise, choose the box most recently
put in L to be the current box. Delete it from L.

2. For future reference, store a copy of the current box xI. Call the

copy xI(1)
. If hull consistency has been applied n times in succes-

sion without applying a Newton step, go to Step 9. (In making this
count, ignore any applications of box consistency.) Otherwise, apply
hull consistency to the equation fi (x) = 0 (i = 1, · · · , n) for each
variable xj (j = 1, · · · , n). To do so, cycle through equations and
variables as described at the end of Section 10.2. Use more general
hull consistency methods if desired. See Section 10.5. If the result
is empty, go to Step 1.

3. If xI satisfies both CriteriaA and B (see (11.5.1) and (11.5.2)), record
xI as a solution and go to Step 1.

4. If the box xI(1) (see Step 2) was sufficiently reduced (as defined using
(11.7.4)) in Step 2, repeat Step 2.

5. Using the algorithm in Section 10.2, apply box consistency to each
of the equations fi (x) = 0 (i = 1, · · · , n) for each of the variables
xj , (j = 1, · · · , n). If the result is empty, go to Step 1.

6. Repeat Step 3.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

7. If the current box xI is a sufficiently reduced (as defined using (11.7.4))

version of the box xI(1) defined in Step 2, got to Step 2.

8. If w(xI) > 1
2 (wR + wI), go to Step 28.

9. If xI is contained in a box for which the matrix B was saved in Step
19, use B to compute a point xB as described in Section 11.4.1. (The
procedure to do so uses an iterative version of y = x − Bf (x)).

Then set x = xB for use in Step 10. Otherwise, set x equal to the
approximate center of xI.

10. For later reference, denote the current box by xI(2)
. Compute J(x, xI)

using a Taylor expansion based on (7.3.6) or else using slopes (see
(7.9.1)). Use the point determined in Step 9 as the point of expansion.
Compute an approximation Jc for the center of J(x, xI). Compute an
approximate inverse B of Jc. If Jc is singular, compute B as described
in Section 5.11. Compute M(x, xI) = BJ(x, xI) and r(x) = −Bf(x).

If Mii(x, xI) ≤ 0 for any i = 1, · · · , n, then M(x, xI) is irregular; so
update wI as described in Section 11.11 and go to Step 12.

11. Compute PI = [M(x, xI)]−1. If PI ≥ I, then M(x, xI) is regular
(see Theorem 5.8.1). Otherwise, M(x, xI) is irregular. If M(x, xI) is
regular, update wR as described in Section 11.11 and go to Step 16.
If M(x, xI) is irregular, update wI and go to Step 12.

12. If every diagonal element of M(x, xI) contains zero, go to Step 14.
Otherwise, apply one pass of the Gauss-Seidel method (11.2.7) to
“solve” M(x, xI)(y − x) = r(x). If the result is empty, go to Step 1.

13. Repeat Step 3.

14. If the box was sufficiently reduced (as defined using (11.7.4)) by the
single pass of the Gauss-Seidel method of Step 12, update wR as if
M(x, xI) were regular for the box to which the Gauss-Seidel method
was applied in Step 12 and return to Step 12. If the box was not
sufficiently reduced in Step 12, go to Step 15.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

15. If the current box is a sufficiently reduced (as defined using (11.7.4))

version of the box xI(1) defined in Step 2, put x in list L and go to
Step 1. Otherwise, go to Step 28.

16. Use the hull method (see Section 5.8.2) to solve M(x, xI)(y − x) =
r(x). If the result is empty, go to Step 1.

17. Repeat Step 3.

18. If Criterion C of Section 11.5 is satisfied, record xI as a solution and
go to Step 1.

19. Record the fact that the matrix B computed the last time Step 10 was
applied is to be used whenever Step 9 is applied to any subbox of xI.

20. If w(xI) ≤ 1
8 w(xI(2)

) (note xI(2) was defined in Step 9), go to Step 9.

21. Note: The user might wish to bypass analytic preconditioning. See
the comment in Section 11.9. If so, go to Step 25.

Additional note: This step as well as Steps 22 and Step 25 are written
for the case in which the first method of analytic preconditioning
described in Section 11.9 is used. If the alternative method in Section
11.9.1 is used, these steps must be altered accordingly. In either
case, determine the analytically preconditioned function BfI (x) as
described in Section 11.9.

22. If hull consistency has been applied n times to the analytically pre-
conditioned equation Bf(x) = 0 without changing B, go to Step
25. Otherwise, apply hull consistency to solve the i-th equation of
Bf(x) = 0 to bound xi for i = 1, · · · , n. If the result is empty, go to
Step 1.

23. Repeat Step 3.

24. If the box xI is sufficiently reduced (see (11.7.4)) in Step 16, go again
to Step 22.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

25. Apply box consistency to solve the i-th equation of the analytically
preconditioned system Bf(x) = 0 to bound xi for i = 1, · · · , n. If
the result is empty, go to Step 1.

26. Repeat Step 3.

27. If xI is a sufficiently reduced (see (11.7.4)) version of the box xI(1)

defined in Step 2, put xI and xB in L, and go to Step 1.

28. Split xI as described in Section 11.8. Put the boxes generated by
splitting in list L. Then go to Step 1.

After termination (in Step 1), bounds on all solutions of f (x) in the

initial box xI(0) have been recorded. A bounding box xI recorded in Step 3
satisfies the conditions w(xI) ≤ εX and ||f(xI)|| ≤ εf specified by the user.
A box xI recorded in Step 14 approximates the best possible bounds that
can be computed with the number system used.

11.13 DISCUSSION OF THE ALGORITHM

In this section, we discuss why certain steps of the algorithm in Section
11.12 are as given.

In Step 1, we select the box for processing that has been in the list
the shortest length of time. This tends to select the smallest box without
bothering to determine box sizes. This, in turn, tends to keep the length
of the list short. If, for example, we processed the largest box, it is more
likely to be split and this adds boxes to the list.

After an interval Newton method has been applied, we have computed a
Jacobian over a box containing xI and a matrix B which is the approximate
inverse of the center of the Jacobian. If the resulting box xI is split we could
use B to try to obtain an approximate solution to f(x) (as described in Section
11.4.1) for each of the new boxes generated by the splitting. However, recall
that we split only if the Newton step fails to make sufficient progress. This
lack of progress tends to indicate that B is not useful in reducing ||f(x)||.
Therefore, we do not use B for this purpose in any of the generated subboxes.
A user might wish to insert such a procedure.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

If the matrix M(x, xI) used in Step 16 is regular, then the hull method
produces the hull of the solution set of

M(x, xI)(y − x) = rI (x) ,

where M(x, xI) and rI (x) are defined in (11.2.5). In this case, a repeat of
Step 16 cannot improve the result without recomputing this matrix. How-
ever, if M(x, xI) is irregular, a Gauss-Seidel step is used and it might be
possible to compute a sharper solution by repeating Step 12 using the same
matrix. This explains Step 14.

When the Newton method exhibits rapid convergence, there is little
point in using other methods. Therefore, in Step 20, we bypass hull con-
sistency and box consistency when the Newton method suffices.

11.14 ONE NEWTON STEP

We use an interval Newton method as part of an algorithm to solve a global
optimization problem. For example, see Section 12.8. When we do so, we
do not iterate the interval Newton algorithm to convergence. The reason is
that it might be converging to a point that another procedure can show is
not the global solution.

Therefore, we perform one “pass” of an interval Newton algorithm and
then apply other procedures before doing another pass. We describe such
a one-pass algorithm in this section.

This “one Newton step” algorithm does not use consistency methods
because, these procedures are implemented differently in our optimization
algorithms. Various steps of the algorithm of Section 11.12 are omitted
because they occur in the main optimization algorithm. In particular, this
special algorithm does not check for progress or convergence and does not
split boxes.

When we refer to one pass of the interval Newton method, we mean the
following:

1. Compute J(x, xI) using a Taylor expansion based on (7.3.6) or else
using slopes (see 7.9.1)). Compute an approximation Jc for the
center of J(x, xI). Compute an approximate inverse B of Jc. If

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Jc is singular, compute B as described in Section 5.11. Compute
M(x, xI) = BJ(x, xI) and r(x) = −Bf(x). If Mii(x, xI) ≤ 0 for any
i = 1, · · · , n, then M(x, xI) is irregular; so update wI as described
in Section 11.11 and go to Step 3.

2. Compute P = [M(x, xI)]−1. If P ≥ I, then M(x, xI) if regular (see
Theorem 5.8.1). Otherwise, M(x, xI) is irregular. If M(x, xI) is
regular, update wR as described in Section 11.11 and go to Step 5. If
M(x, xI) is irregular, update wI and go to Step 3.

3. If every diagonal element of M(x, xI) contains zero, return to the main
program. Otherwise, apply one pass of the Gauss-Seidel method
(11.2.7) to “solve” M(x, xI)(y − x) = r(x). If the result is empty,
record this fact for use in the main program; and return to the main
program.

4. If the box was sufficiently reduced (as defined using (11.7.4)) by
the single pass of the Gauss-Seidel method of Step 3, update wR

as if M(x, xI) were regular for the box to which the Gauss-Seidel
method was applied in Step 3 and return to step 3. If the box was
not sufficiently reduced in Step 3, record the final box for use in the
main program; and return to the main program.

5. Use the hull method (see Section 5.8.2) to solve M(x, xI)(y − x) =
r(x). Record the result for use in the main program; and return to the
main program.

No matter which method is used to solve the preconditioned system, it is
good practice to follow with the inner iteration of Section 11.4.1 to obtain
a point of expansion for a subsequent Newton step.

11.15 PROPERTIES OF INTERVAL NEWTON METHODS

Interval Newton methods for multidimensional problems have most of the
properties listed in Section 9.6 for the corresponding one-dimensional algo-
rithm. In this section, we discuss a possible exception and then state some

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

relevant theorems. In practice, we combine use of hull and box consisten-
cies with use of an interval Newton method. In this section on theorems
we concentrate on Newton methods and assume no consistency methods
are used.

Global convergence is a subject of interest in noninterval algorithms
for finding the zeros of systems of nonlinear equations. Will the algorithm
always converge from any initial point to some solution if one exists? In
the interval case, we can bypass this question and ask the more important
one: Will the algorithm always find all solutions in a given box.

Proof exists in the interval case for local convergence under certain
conditions (see below). However, the authors know of no proof that all
solutions in a given box are always found. Nevertheless, there is little
doubt that an algorithm such as the one given in Section 11.12 always does
so when the number of these solutions is finite. It is difficult to conceive
how the truth can be otherwise. The authors are unaware of any failure in
practice.

Of course, it is easy to formulate an example in which there are so
many isolated solutions that it is impractical to find them all. It is obviously
impossible to find all solutions when there are infinitely many of them, each
of which is isolated from the others. However, for appropriate problems,
interval methods can find and bound an infinite set of solutions consisting
of a continuum of points. See Section 11.17.

We now consider proven properties of interval Newton methods. We
begin with a theorem due to Moore (1966).

Theorem 11.15.1 If there exists a zero x∗ of f in xI, then x∗ ∈ N(x, xI).

In this theorem, N
(
x, xI

)
is the box obtained (using exact interval arith-

metic) by a particular interval Newton method that bounds the solution set
Sy of all vectors y that satisfy J

(
x, xI

)
(y−x) = −f I (x) . See Section 11.2.

The conclusion of this theorem is the motivating idea in the derivation of an
interval Newton method. Examining the derivation in Section 11.2 shows
that the theorem is correct.

In practice, when rounding occurs, we compute a box containing
N(x, xI). Hence, even with rounding, we never “lose” a zero of f .

The following theorem is also due to Moore (1966).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Theorem 11.15.2 If xI ∩ N(x, xI) is empty, then there is no zero of f in xI.

Proof. If there is a zero of f in xI, it must also be in N(x, xI) by Theorem
11.15.1. Hence, if xI ∩ N(x, xI) is empty, there can be no zero of f in xI.

If rounding occurs, we compute a box N′(x, xI) containing N(x, xI). If
xI ∩ N′(x, xI) is empty, then xI ∩ N(x, xI) is empty. Therefore, the theorem
is applicable even in the presence of rounding.

Proofs of convergence have been given for various interval Newton
methods. Theorem 11.15.3 below is for the method in which equation
(11.2.2) is solved by Gaussian elimination. A more general form was proved
by Alefeld (1984). See also Alefeld (1999). Krawczyk (1983) proved con-
vergence for his method. See (11.2.8). Alefeld (1979) proved convergence
for the Hansen-Sengupta version (11.2.7) of the Gauss-Seidel method. For
a thorough discussion of convergence of various interval Newton methods,
see Neumaier (1990).

We know of no explicit proof of convergence when the hull method of
Section 5.8 is used. Note that it produces the exact hull of the preconditioned
linear system

M(x, xI)(y − x) = rI (x) (11.15.1)

(see (11.2.6a) when M(x, xI) is regular. Therefore, it produces a solution
at least as sharp as when using the Gauss-Seidel method to “solve” this
system. Therefore if M(x, xI) is regular, any proof of convergence using
Gauss-Seidel also proves convergence when using the hull method.

To state Alefeld’s convergence theorem, we must introduce some nota-
tion relevant to Gaussian elimination. Consider a system of interval linear
equations AIx = bI. Suppose we are successful in trying to solve this
system by Gaussian elimination. Using Alefeld’s notation, we denote the
computed solution by IGA(AI, bI) where IGA stands for interval Gauss
algorithm.

Note that success or failure when solving the system depends on the
coefficient matrix AI but not on the right hand side vector bI.

For the interval Newton method we are considering, we wish to solve
(11.9.1) with preconditioning. Therefore, AI = J(x, xI) and bI = −f I (x) .

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The order of the matrix J(x, xI) is n. For theoretical reasons, we con-
sider the case in which we solve J(x, xI)z = b(i) for i = 1, · · · , n with b(i)

equal to the i-th column of J(x, xI). We place the i-th solution vector as
the i-th column of a matrix that we denote by IGA

[
J(x, xI), J(x, xI)

]
.

In a real sense, this matrix is the solution, say zI, to the equation
J(x, xI)zI = J(x, xI). Therefore, IGA

[
J(x, xI), J(x, xI)

]
approximates the

identity matrix. It is the difference of this matrix from the identity that we
use to determine whether the interval Newton method converges.

In Theorem 11.15.3 given below, we use the following notation. Let
AI be an interval matrix. The real matrix |AI| is the matrix derived from AI

by replacing each element by its magnitude.

Theorem 11.15.3 Let f be continuously differentiable. Let xI(0) be the
initial box in the interval Newton algorithm given by (11.2.4) and assume

x(0) ∈ xI(0)
. Assume Gaussian elimination can be completed successfully

for the coefficient matrix J(x(0), xI(0)
). Assume ρ(zI) < 1 where ρ is the

spectral radius and

zI =
∣
∣
∣I − IGA

[
J(x(0), xI(0)

), J(x(0), xI(0)
)
]∣
∣
∣ .

Then the sequence defined by (11.2.4) is well defined. If f has a zero x∗

in xI(0), then the limit of xI(k) as k → ∞ is x∗. If f does not have a zero

in xI(0), then there is an integer k′ ≥ 0 such that N(x(k′), xI(k
′)
) ∩ xI(k

′) is

empty. This proves there is no zero of f in xI(0)
.

See Alefeld (1984) for a proof of this theorem. See also Alefeld (1999).
In our algorithm in section 11.12, we always precondition the system
(11.9.1). Alefeld’s proof holds whether the system is preconditioned or
not.

The following theorem shows that, under certain conditions, the volume
of the current box is reduced by at least half in a step of the interval Newton
method using Gaussian elimination.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Theorem 11.15.4 Let the hypothesis of Theorem 11.15.3 be satisfied. As-

sume that m(xI(k)
) is not a zero of f . If there exists a zero of f in xI(0), then

m(xI(k)
) /∈ xI(k+1).

Any box that does not contain the center of xI(k) must intersect less than

half of xI(0). Therefore, the theorem states, in effect, that the volume of
xI(k+1) is less than half that of xI(k) for all k.

This theorem is proved by Alefeld (1984). Compare Corollary 5.2.9 of
Neumaier (1990).

To discuss how interval Newton methods can prove the existence of a
solution, we introduce the following proposition.

Proposition 11.15.5 If N(x, xI) ⊂ xI, then there exists a zero of f in
N(x, xI).

This proposition has been proved for various interval Newton methods.
Recall that interval Newton methods differ in how the bound N(x, xI) is
computed from (11.2.6a). Each proof of Proposition 11.15.5 has been for a
method using a specific procedure for computing N(x, xI). The first proof
of Proposition 11.15.5 was by Kahan (1968) for a method he derived and
which is now called Krawczyk’s method after its independent derivation by
Krawczyk (1969). See (11.2.8). Proof for this method can also be found
in Moore (1977, 1979). See also Alefeld (1999).

Proofs for various methods can be found in Alefeld (1999), Krawczyk
(1986), Nickel (1971), Qi(1982), Shearer and Wolfe (1985a), and especially
Neumaier (1990).

When the Gaussian elimination or the Gauss-Seidel method is used to
compute N(x, xI), an intersection process is used to compute each new

component. See (11.2.6b). Therefore, we always have xI(k+1) ⊂ xI(k). To
invoke Proposition 11.15.5, we must assume that the box N(x, xI) is the
same one that results if no intersecting is done.

Alternatively, authors usually impose the slightly stronger condition

that xI(k+1) be strictly in the interior of xI(k). Thus, we state a relevant
theorem as follows.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Theorem 11.15.6 Let f be continuously differentiable in xI and let x be
an interior point of xI. Assume N(x, xI) is computed from (11.2.6a) using
Gaussian elimination or a Gauss-Seidel step. If N(x, xI) is in the interior
of xI, then there exists a unique zero of f in xI (and hence in N(x, xI)).

For a proof of this theorem, see Neumaier (1985, 1990) or Alefeld (1999).
In practice, when rounding is present, we compute a box N′(x, xI)

containing N(x, xI). If N′(x, xI) ⊂ xI, then N(x, xI) ⊂ xI. Hence, we can
invoke Theorem 11.15.6 even when rounding occurs and guarantees the
existence and uniqueness of a zero of f in a box xI.

Hansen and Walster (1990b) conjectured as follows that Proposition
11.15.5 is true for all interval Newton methods.

Conjecture 11.15.7 Let s denote the set of solutions s of

f (x) + J(x, xI)(s − x) = 0.

(See (5.2.3)). If s ⊂ xI, then there exists a solution of f = 0 in s.

All interval Newton methods compute a box N(x, xI) containing s. If
N(x, xI) ⊂ xI, then s ⊂ xI. Therefore, if the conjecture is true, then
Proposition 11.15.5 is true for all interval Newton methods.

The following theorem shows that, despite its crudeness, the earliest
interval Newton method (given by (11.3.1)) exhibits quadratic convergence.
For a more thorough discussion of convergence of interval Newton methods,
see Neumaier (1990). Also, see Alefeld (1999) and Frommer and Mayer
(1990).

Theorem 11.15.8 Let f be continuously differentiable in the initial box

xI(0). Assume xI(0) contains a zero x∗ of f = 0. Assume that an inter-
val matrix V(x(0), xI(0)

) exists that contains the inverse of every matrix in

J(x(0), xI(0)
). If the sequence of boxes generated by (11.3.1) converges, then

w(xI(k+1)
) ≤ γ

[
w(xI(k)

)
]2

for some constant γ ≥ 0.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

This theorem was proved by Alefeld and Herzberger (1974, 1983).
The theorems in this section implicitly or explicitly depend on the as-

sumption that f is expressed in a Taylor series. They remain valid if the
expansion is in terms of slopes.

11.16 A NUMERICAL EXAMPLE

In this section, we give a simple numerical example that we solved by
the algorithm in Section 11.12. Consider the well known Broyden banded
function (Broyden (1971)). It is given by

fi (x) = xi(2 + 5x2
i) + 1 −

∑

j∈Ji

xj (1 + xj) = 0 (i = 1, · · · , n)

where Ji = {j : j �= i, max(1, i − 5) ≤ j ≤ min(n, i + 1)}. Let n = 3.

Let the initial box be given by Xi = [−1, 1] (i = 1, 2, 3) . We chose
εX = 10−8 and εf = 1 so that termination was driven by the size of the
final box.

Hansen and Greenberg (1983) solved this problem with the same ini-
tial box. Depending on the form used, their algorithm required twelve
or thirteen Newton steps to satisfy the convergence criterion specified by
εX = 10−8. The algorithm in Section 11.12 used three Newton steps.

However, this algorithm also uses hull and box consistencies. For this
example, it applied hull consistency five times to the original equations. It
applied both hull and box consistencies twice to the preconditioned system.
These procedures used almost as many arithmetic steps as the three New-
ton steps. Note that for problems in higher dimensions, these procedures
require fewer arithmetic operations than a Newton step.

In this example, the box consistency steps can be omitted with almost
no change in the performance of the algorithm.

No splitting of the original box or any subbox was required by the
algorithm of Section 11.12 to solve the above example.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

11.17 PERTURBED PROBLEMSAND SENSITIVITYANAL-
YSIS

Interval Newton methods can be used to solve perturbed problems and
to provide sensitivity analysis. We discuss the procedures briefly in this
section. For other discussions of this topic, see, for example, Neumaier
(1990) and Rump (1990). See also Section 17.11.

When using an interval Newton method, noninterval quantities such as
f (x) are computed as interval quantities because interval arithmetic is used
to bound rounding errors. If f (x) is defined in terms of a transcendental
constant such as π, it is necessary to replace the constant by an interval
containing it to assure that the computed version of f (x) contains the true
value.

In general, then, the function f (x) is really an interval. The interval
Newton method treats it as such. In general, a “zero” of f is therefore a set
of points and not a single point.

To simplify discussion, assume f depends on a single parameter p that
cannot be exactly represented in the number system used on the computer.
Let us replace p by an interval P containing it. We now denote the function
by f(x, P). A “zero” of f(x, P) is the set of zeros of f(x, p) as p varies
over P .

Whether p can be exactly represented on the computer or not, we might
be interested in the set of zeros of f as a parameterp varies over some interval
P . We can compute a box containing this set. We simply replace p by P

and apply an interval Newton method to solve f(x, P) = 0. No change in
the interval Newton algorithm is necessary. It is already designed to solve
this problem.

In general, the solution set is not a box. In a sense, the best the interval
Newton method can do is to compute the smallest box containing the solu-
tion set. The alternative is to cover the solution set with a number of small
boxes. Actually, the smallest box containing the solution cannot generally
be computed because of rounding errors. However, it is contained in the
computed solution.

A directly related problem is sensitivity analysis. Suppose we wish to
know how much a zero of f changes as p varies over some interval. That is,

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

we wish to know the size of the solution set. A partial answer is produced
if we compute the smallest box containing the solution set.

We can approximate the solution set as closely as desired by subdi-
viding P into small subintervals, solving the problem for each subinterval
separately, and taking the union of the results.

As just pointed out, the computed box cannot generally be the best
possible box because of rounding errors. However, we can approximate
it. But to do so, we must allow the interval Newton algorithm to continue
until it stops progressing. That is, we cannot use stopping Criteria A or B
discussed in Section 11.5. We discussed the implications of this possibility
in that section.

Previously, in this chapter, we have usually assumed that the point of
expansion for the interval Newton method is the center of the current box.
In the perturbed case, convergence of the method does not necessarily yield
the smallest box containing the solution set. We discussed this difficulty
for the one dimensional case in Section 9.10. An illustrative example for
the multidimensional case is given by Hansen and Greenberg (1983).

It seems certain that the best result can be produced by using appropri-
ate corners of the current box as the points of expansion. However, we do
not know if this is true. Moreover, it might be necessary to use too many
different corners for this approach to work. Nevertheless, it seems reason-
able to do the following. Use the center of the current box as the point of
expansion until convergence Criterion C is satisfied. Then perform two
extra iterations of the interval Newton method. First use the lower end-
points and then the upper endpoints of the components of the current box
as the point of expansion.

In Section 17.11, we give an alternative procedure for sharply bounding
the smallest box containing a solution. For another approach to computing
the best result, see Dinkel, Tretter, and Wong (1988). For a method that
covers the solution set with boxes of a specified size, see Neumaier (1988).

11.18 OVERDETERMINED SYSTEMS

A square system of nonlinear (or linear) equations can be solved directly,
or as an optimization problem in which a norm, usually L2 (least squares),

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

is minimized. The direct solution, when available, is preferred because
it is better conditioned than the corresponding optimization. When the
system is overdetermined, the only procedure has been to use optimization.
Walster and Hansen (2003) have developed a procedure to directly solve
overdetermined systems of nonlinear equations. This procedure can be
used directly, or as part of a constrained optimization problem. It is worth
noting that an empty solution set can be used to numerically prove a system
of interval equations (whether linear or nonlinear) is inconsistent. This
event can then be used to falsify a theory or model.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 12

UNCONSTRAINED
OPTIMIZATION

12.1 INTRODUCTION

In this chapter, we consider the unconstrained optimization problem. Con-
strained problems are discussed in Chapters 13, 14, and 15. An interval
method for multicriterion optimization is given in Ichida and Fujii (1990).

We consider the problem

Minimize (globally) f (x) (12.1.1)

where f is a scalar function of a vector x of n components. We seek the
minimum value f ∗ of f and the point(s) x∗ at which this minimum occurs.

In our algorithm, we often use a Taylor expansion of the objective
function f . For simplicity, we assume that any used derivative exists and
is continuous in the region considered.

Interval methods exist that do not require differentiability. See Ratschek
and Rokne (1988) or Moore, Hansen, and Leclerc (1991). We discuss
this case in Section 12.18. Such methods are slower than those that take
advantage of differentiability.

In Chapter 18, we show that some problems in which f is not differen-
tiable can be reformulated as problems in which the new objective function

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

has continuous derivatives of arbitrary order. An alternative approach is to
use subdifferentials or slopes of nondifferentiable functions. See Section
7.11.

Following our convention, the discussion below is in terms of deriva-
tives. However, replacing derivatives by slopes yields more efficient algo-
rithms.

A simple way to use interval analysis in optimization is merely to bound
rounding errors. Its first use for this purpose was by Robinson (1973).
For other early papers of this kind, see Mancini (1975) and Mancini and
McCormick (1976).

However, interval analysis has had a much more profound impact on
optimization than just providing a means for bounding rounding errors.
Interval analysis makes it possible to solve the global optimization prob-
lem, to guarantee that the global optimum is found, and to bound its value
and location. Secondarily, perhaps, it provides a means for defining and
performing rigorous sensitivity analyses. See Chapter 17.

Until fairly recently, it was thought that no numerical algorithm can
guarantee having found the global solution of a general nonlinear opti-
mization problem. Various authors have flatly stated that such a guarantee
is impossible. Their argument was as follows: Optimization algorithms can
sample the objective function and perhaps some of its derivatives only at a
finite number of distinct points. Hence, there is no way of knowing whether
the function to be minimized dips to some unexpectedly small value be-
tween sample points. In fact the dip can be between closest possible points
in a given floating point number system.

This is a very reasonable argument; and it is probably true that no
algorithm using standard arithmetic will ever provide the desired guarantee.
However, interval methods do not sample at points. They compute bounds
for functions over a continuum of points, including ones that are not finitely
representable. See Theorem 4.8.14.

For example, consider the function

f (x) = x4 − 4x2

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

that has minima at x = ±21/2. Suppose we evaluate f at the point x = 1
and over the interval [3, 4]. We obtain

f (1) = −3 and f ([3, 4]) = [17, 220].
Thus, we know that f (x) ≥ 17 for all x ∈ [3, 4] including such transcen-
dental points as π = 3.14.... Since f (1) = −3, the minimum value of f is
no larger than −3. Therefore, the minimum value of f cannot occur in the
interval [3, 4]. We have proved this fact using only two evaluations of f .

In general the evaluation of f at a point involves rounding. Suppose that
(outward) rounding and widening of intervals from dependence occurred
in our example and we somehow obtained

f I(1) = [−3.1, −2.9] and f I([3, 4]) = [16.9, 220.1].
Because we have bounded all errors, we know that f (1) ≤ −2.9 and that
f (x) ≥ 16.9 for all x ∈ [3, 4]. Hence, as before, we know the minimum
value of f is not in [3, 4]. Rounding and dependence have not prevented
us from infallibly drawing this conclusion.

By eliminating subintervals that are proved to not contain the global
minimum, we eventually isolate the minimum point. We describe various
ways to do the elimination.

An algorithm for global optimization was introduced by Hansen (1980).
The algorithm provides guaranteed bounds on the globally minimum value
f ∗ of an objective function and on the point(s) x∗ where it occurs. It
guarantees that the global solution(s) in some given box has been found. A
one dimensional version of the algorithm can be found in Hansen (1979).

In this chapter, we describe an improved version of the algorithm. The
primary improvement is the introduction of hull and box consistency. Var-
ious other changes are also made.

Because of computational limitations on accuracy, our algorithm might
also find “near global” minima when rounding and/or dependence prevents
determination of which of two or more candidates is the true minimum.
However, if the termination criteria are chosen stringently enough, our
algorithm always eliminates a local minimum from consideration if f is
sufficiently larger than f ∗ at the local minimum. Obviously, “sufficiently
larger” depends on the wordlength used in the computations

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In Section 12.2, we present an overview of the optimization algorithm.
In Section 12.3, we discuss the initial box in which the solution is sought.
Sections 12.4 through 12.13 describe various subalgorithms of the overall
procedure. Termination procedures are considered in Section 12.9. The
steps of the algorithm are given in Section 12.14 and discussed in Section
12.15. A numerical example is given in Section 12.16. Problems with
multiple minima are discussed in Section 12.17. Section 12.18 discusses
problems with nondifferentiable objective functions.

12.2 AN OVERVIEW

Our algorithm computes guaranteed bounds on the minimum value f ∗ of the
objective function f and on the point(s) x∗ where f takes on this minimum
value. If there is more than one solution point, our algorithm never fails to
find them all. It proceeds roughly as follows:

1. Begin with a box xI(0) in which the global minimum is sought. Be-
cause we restrict our search to this particular box, our problem is
really constrained. We discuss this aspect in Section 12.3.

2. Delete subboxes of xI(0) that cannot contain a solution point. Use
fail-safe procedures so that, despite rounding errors, the point(s) of
global minimum are never deleted.

The methods for Step 2 are as follows:

(a) Delete subboxes of the current box wherein the gradient g of
f is nonzero. This can be done without differentiating g, as is
described in Section 12.4. This use of monotonicity was intro-
duced by Hansen (1980). Alternatively, consistency methods
(see Chapter 10) and/or an interval Newton method (see Chap-
ter 11) can be applied to solve the equation g = 0. In so doing,
derivatives (or slopes) of g are used. By narrowing bounds on
points where g = 0, application of a Newton method deletes
subboxes wherein g �= 0.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

(b) Compute upper bounds on f at various sampled points. The

smallest computed upper bound f is an upper bound for f ∗.

Then delete subboxes of the current box wherein f > f. See
Section 12.5. The concept of generating and using an upper
bound in this way was introduced by Hansen (1980).

(c) Delete subboxes of the current box wherein f is not convex.
See Section 12.7. The concept of using convexity in this way
was introduced by Hansen (1980).

3. Iterate Step 2 until a sufficiently small set of points remains. Since
x∗ must be in this set, its location is bounded. Then bound f over
this set of points to obtain final bounds on f ∗

For problems in which the objective function is not differentiable, Steps
2a and 2c cannot be used because the gradient g is not defined. Step 2b is
always applicable.

We describe these procedures and other aspects of our algorithm in this
chapter. For simpler tutorial discussions, see Hansen (1988) and Walster
(1996). For a survey discussion, see Hansen and Walster (1990b).

12.3 THE INITIAL BOX

The user of our algorithm can specify a box or boxes in which the solution
is sought. Any number of finite boxes can be prescribed to define the region
of search. The boxes can be disjoint or overlap. However, if they overlap,
a minimum at a point that is common to more than one box is separately
found as a solution in each box containing it. In this case, computing effort
is wasted. For simplicity, assume the search is made in a single box that

we denote by xI(0)
.

If the user does not specify xI(0), we search in a “default box” described
in Section 11.10. The smaller the initial box, the faster the algorithm can
solve the problem. Therefore, it is better if the user can specify a smaller
box than the default.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Since we restrict the region of search to a finite box, we have replaced
the unconstrained problem by a constrained one of the form

Minimize (globally) f (x)

Subject to x ∈ xI(0) (12.3.1)

Actually, we do not solve this constrained problem because we assume the
solution occurs at a stationary point of f . We can solve this problem by
using the method for inequality constrained problems to be discussed in

Chapter 14. However, it is simpler to assume the box xI(0) is so large that

a solution does not occur at a nonstationary point on the boundary of xI(0).

Experience has shown that, in practice, xI(0) can generally be chosen
quite large without seriously degrading the efficiency of the algorithm. For
noninterval algorithms, this is not necessarily the case. An algorithm that
converges nicely for a given initial search point x(0) might fail to converge
from the point 10x(0) or 100x(0). See Moré, Garbow and Hillstrom (1981).

Walster, Hansen, and Sengupta (1985) compared run time on their in-
terval algorithm as a function of the size of the initial box. They found that
increasing box width by an average factor of 9.1 × 105 increased the run
time by an average factor of only 4.4. For one example, however, the run
time increased by a factor of 265. R. E. Moore (private communication)
observed a case in which run time increased by a factor of only 2.3 when
the box width increased by a factor of 4.2 × 108.

Often, a finite region of interest is known; and we can specify xI(0)

with assurance that it contains the global minimum. For simplicity in what
follows, we assume that this is the case.

12.4 USE OF THE GRADIENT

We assume that f is continuously differentiable. Therefore, the gradient
g of f is zero at the global minimum. Of course, g is also zero at local
minima, at maxima and at saddle points. Our goal is to find the zero(s) of
g at which f is a global minimum. As we search for zeros, we attempt to
discard any that are not a global minimum of f. This is done by procedures

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

outlined in Section 12.2 and discussed fully in other sections of this chapter.
Generally, we discard boxes containing nonglobal minimum points before
we spend the effort to bound such minima very accurately.

Note that the condition g = 0 does not have a counterpart expressed in
terms of slopes. This is one of the few cases where derivatives, rather than
slopes, must be used.

Hansen (1980) noted that we can use a simple monotonicity test that
can enable us to prove nonexistence of a stationary point in a box. In such
a case, the box can be deleted. We now describe this test and then note that
it is better replaced by a step of a hull consistency procedure.

Let xI be a subbox of the initial box xI(0)
. (In Section 12.14, we discuss

how xI might be obtained.) We evaluate the components of g over xI. That
is, we evaluate gi(xI) for i = 1, · · · , n. Denote the resulting interval by
[g

i
(xI), gi(x

I)]. If g
i
(xI) > 0 or if gi(x

I) < 0, then gi(x) �= 0 for any

x ∈ xI. Therefore, there is no stationary point of f in xI. Therefore, xI

cannot contain the global minimum of f and can be deleted.
In practice, the bounds on gi(xI) can fail to be sharp because of rounding

and/or dependence. Nevertheless, the procedure remains valid.
In Section 10.10, we note that hull consistency can perform a test of

this kind with essentially the same amount of computing. Moreover, it can
sometimes reduce the box in the process. Therefore, hull consistency is
better than simply evaluating g(xI). The following example illustrates this
point.

A well known example in unconstrained optimization is the so-called
three hump camel function

f (x, y) = 2x2 − 1.05x4 + 1

6
x6 − xy + y2.

The components of the gradient of f can be written as

g1(x, y) = x[(x2 − 2.1)2 − 0.41] − y,

g2(x, y) = 2y − x.

For the box used, we have written g1(x, y) in a form from which its interval
value can be sharply computed.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Let X = [3, 4] and Y = [1.9, 142]. If we simply evaluate g1(X, Y) and
g2(X, Y), we find that each of these intervals contain zero. Therefore, we
gain no information about nonexistence of a stationary point in the box.

Now suppose we use hull consistency. We write g1(x, y) in its more
natural form

g1(x, y) = 4x − 4.2x3 + x5 − y.

Suppose we solve for the term 4x. We write the remaining terms containing
x in factored form so that

4X′ = Y − X3(X2 − 4.2).

We compute X′ = [−188.325, 3.1], which we replace by X′′ = X ∩ X′ =
[3, 3.1]. Thus, we have improved the interval bound on x.

We can continue to apply hull consistency to g1 by solving for other
terms; but suppose we do not. Let us now apply hull consistency to g2.
Suppose we solve for y as 2Y ′ = X′′. We obtain Y ′ = [1.5, 1.55]. Since
Y ′ ∩ Y is empty, there is no point in the original box at which g = 0.
Therefore, the box cannot contain a minimum of f .

Simply evaluating g over the box gave no information. With essentially
the same computational effort, hull consistency first improves the bounds
on x and then reveals the nonexistence of a solution in the box.

12.5 AN UPPER BOUND ON THE MINIMUM

We use various procedures to find the zeros of the gradient of the objective
function. We have noted that these zeros can be stationary points that are
not the global minimum. Therefore, we want to avoid spending the effort
to closely bound such points when they are not the desired solution. In this
section we consider procedures that help in this regard.

As our algorithm proceeds, we evaluate f at various points in the orig-

inal box xI(0). The computed upper bound on each such value is an upper
bound for the globally minimum value f ∗ of f . We use the smallest bound

f obtained in this way.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Let xI be a subbox of xI(0) generated by the algorithm. In any given
step of our algorithm, such a box might be deleted or accepted as a final
bound for a global solution point. More often, xI is reduced in size and/or
split into subboxes. That is, one or more new subboxes is generated. When
this occurs, we evaluate f at the center of each new box. We can also do a
local search for the smallest value of f in such a box. See Section 12.6.

Suppose we evaluate f at a point x. Because of rounding, the result
is generally an interval [f I(x), f I(x)]. Despite rounding errors in the eval-

uation, we know without question that f I(x) is an upper bound for f (x)

and hence for f ∗. Let f denote the smallest such upper bound obtained for
various points sampled at a given stage of the overall algorithm. This upper
bound plays an important part in our algorithm.

Since f ≥ f ∗, we can delete any point (or subbox) of xI(0) for which

f > f. This might serve to delete a subbox that bounds a nonoptimal
stationary point of f . We describe four methods that can be applied to the

relation f (x) ≤ f to try to delete part or all of a subbox generated by our
algorithm. The concept of generating and using an upper bound in this way
was introduced by Hansen (1980).

12.5.1 First Method

Let xI be a given subbox of xI(0). We can simply evaluate f over xI and
obtain [f (xI), f (xI)]. Despite rounding errors, it is certain that f (xI) is a

lower bound for f (x) for any x ∈ xI. Hence, if f (xI) > f, then f (x) > f ∗

for every x ∈ xI. Therefore, we can delete xI

However, there is a better alternative (within the first method). We can
apply hull consistency to the relation f (x) ≤ f over the box xI. As we
noted in Section 10.10, this serves the same purpose with essentially the
same amount of computing required to evaluate f (xI). However, an added
benefit is that part of xI might be deleted. In this case hull consistency is

applied to the equality f (x) = [−∞, f].

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The following example illustrates the utility of this procedure. Problem
number 3.1 of Schwefel (1977) is to find the unconstrained minimum of

f (xI) =
3∑

i=1

[(x1 − x2
i)

2 + (xi − 1)2].

Let the initial box be given by Xi = [−106, 106] for i = 1, 2, 3. We use

hull consistency and solve f (x)− f ≤ 0 for each variable in two ways. We
use

(x1 − x2
j)

2 ≤ f −
3∑

i=1
i �=j

(X1 − X2
i)

2 −
3∑

i=1

(Xi − 1)2

for j = 1, 2, 3 and

(xi − 1)2 ≤ f −
3∑

i=1

(X1 − X2
i)

2 −
3∑

i=1
i �=j

(Xi − 1)2

for i = 1, 2, 3.

When new bounds on both variables have been obtained in this way,
we get a new bound f on f ∗ by evaluating f at the center of the new box.
We iterate these steps. The procedure converges to the solution at (1, 1, 1)

in only seven steps.

The first method (just described) applies hull consistency to f (x) ≤ f.

Note that it does not involve use of derivatives or slopes. The methods
we now discuss use Taylor expansions. However, better results can be ob-
tained using slope expansions. Because expansions are used, the following
methods require more computing than the first method, which uses only
hull consistency.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

12.5.2 Second Method

We can apply box consistency (see Section 10.2.) to the inequalityf (x) ≤ f.

To do so, we rewrite the inequality as the equation F(x) = 0 where

F(x) = f (x) + [−f, ∞].

Suppose we use box consistency to solve F(x) = 0 for a component
xi (i = 1, · · · , n) of x. To do so, we replace all variables except xi by their
interval bounds. Thus, we apply the one-dimensional Newton method to
the function

q I(xi) = F(X1, · · · , Xi−1, xi, Xi+1, · · · , Xn) = 0.

To do so, we expand q I about an endpoint, say ai of Xi. The Newton result
is thus computed as

N(ai, xI) = ai − q I(ai)

gi(xI)
. (12.5.1)

However, we do not apply the Newton step if 0 ∈ q I(ai). See the algorithm
in Section 10.2. Therefore, assume 0 /∈ q I(ai).

In the denominator of (12.5.1), the function gi(xI) is the derivative of
F with respect to xi. That is, it is the i-th component of the gradient g
of f . If 0 /∈ gi(xI) then there is no stationary point of f in xI; and we
delete xI. Therefore, when we apply box consistency to F , we always have
0 ∈ gi(xI).

We now know that the denominator interval in (12.5.1) contains zero
but the numerator does not. Therefore, the quotient in (12.5.1) is computed
as the union of two semi-infinite intervals. The endpoint ai of Xi is in the
interior of the gap between these intervals. This implies that, if the Newton
step is applied, it always deletes part of Xi . However, the deleted part can
be vanishingly small.

Box consistency can be effective when applied to f (x) ≤ f even when
it is applied over a large box. We now consider methods that are usually
effective only when the box is small.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

12.5.3 Third Method

We first describe a method in which we use a Taylor expansion to linearize
f (x). In a sense, this method is the same as the second method using box
consistency except that f is expanded with respect to all the variables. It
is more effective than the second method when the box is small.

Let x be a given point in the current box xI and let y be a variable point
in xI. Denote

gI
i = gi(X1, · · · , Xi, xi+1, · · · , xn).

where gI
i is the i-th component of the gradient of f . From (7.3.6), the first

order Taylor expansion of f gives

f (y) ∈ f (x) +
n∑

i=1

(yi − xi)g
I
i . (12.5.2)

For some j = 1, · · · , n, rewrite (12.5.2) as

f (y) ∈ f (x) + (yj − xj)g
I
j +

n∑

i=1
i �=j

(yi − xi)g
I
i . (12.5.3)

For all i �= j , replace yi by Xi in the right member of (12.5.3). Since
yi ∈ Xi ,

f (y) ∈ f (x) + (yj − xj)g
I
j +

n∑

i=1
i �=j

(Xi − xi)g
I
i . (12.5.4)

Note that f (y) > f if the left endpoint of the right member of (12.5.4)

exceeds f.
Define t = yj − xj and the intervals

U = f (x) +
n∑

i=1
i �=j

(Xi − xi)g
I
i − f

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

andV = gI
j . We wish to delete points of xI whereyj is such thatU+V t > 0

and retain points where

U + V t ≤ 0. (12.5.5)

Let T denote the set of values of t for which (12.5.5) holds. This set can
be an interior or an exterior interval as given by (6.2.4).

Note that if T is the empty set, we have proved that f (y) > f for all
y ∈ xI so we delete xI.

Having computed T for a particular value of j , the set of retained values
of yj is T + xj . Since we are interested only in values of yj within xI

j , we
retain only the intersection

Yj = xI
j ∩ (T + xj).

If this set is empty, we delete all of xI. Otherwise, we replace Xj by Yj .
When computing Yj+1, we use the updated intervals X1, · · · , Xj if and
when they are narrowed. We repeat this procedure for all j = 1, · · · , n.

Note that Yj might be composed of the two intervals surrounding a gap.
Suppose this is the case. Denote the two intervals by [aj , bj] and [cj , dj]
where bj < cj . We know that the global minimum does not occur in the
gap (i.e., the open interval) (bj , cj).

However, for the purpose of computing Yj+1, we ignore this fact and
replace xj by the single interval [aj , dj] containing both of the smaller
subintervals and the gap. This simplifies the work of computing subsequent
components of x. However, we retain the information about identified gaps
so that if we later split a component of the box, we can do so by removing
a gap.

12.5.4 Fourth Method

We now consider a method for using f (x) ≤ f in which we expand f

through second derivative terms. We do not use it in our unconstrained
optimization algorithm. However, we do use it for the constrained case

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

because the necessary second derivatives are sometimes computed for other
purposes.

From (7.3.8), we have

f (y) ∈ f (x) + (y − x)T g(x) + 1

2
(y − x)T H(x, xI)(y − x)

where the element Hij of the Hessian H(x, xI) has arguments
(X1, ...Xj , xj+1, ...xn). Note that H(x, xI) is lower triangular. See Sec-
tion 7.4. We choose x to be the center of xI. Denote z = y − x. We can
delete points y where

f (x) + zT g(x) + 1

2
zT H(x, xI)z > f.

To simplify presentation, we describe the case n = 2. If we delete the
points indicated, we retain the complementary set of points y where

f (x) + z1g1 + z2g2 + 1

2
(z2

1H11 + z1z2H21 + z2
2H22) ≤ f (12.5.6)

We first solve (12.5.6) for z1. Therefore, we replace z2 by Z2 = X2−x2.
That is, we replace y2 by its bounding interval X2. Thus, (12.5.6) becomes

A + Bz1 + Cz2
1 ≤ 0 (12.5.7)

where

A = f (x) − f + Z2g2 + 1

2
Z2

2H22

B = g1 + 1

2
Z2H21

C = 1

2
H11.

Suppose we solve the quadratic relation (12.5.7) (as described in Section
8.2) for z1 and obtain an interval Z′

1 and thus the interval X′
1 = Z′

1 + x1.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Since we are interested only in points in X1, the solution of interest is
X′′

1 = X1 ∩X′
1. If X′′

1 is empty, there is no point in xI at which f is as small

as f. In this case, we have proved that the global minimum of f cannot
occur in xI.

The interval X′
1 might contain a gap in which the global minimum of

f cannot occur. If there is such a gap, we temporarily ignore it.
Next, we solve (12.5.6) for z2. To do so, we replace z1 by the interval

bounding it. We use the improved result Z′′
1 = X′′

1 − x1. We obtain the
quadratic relation

A + Bz2 + Cz2
2 ≤ 0 (12.5.8)

where

A = f (x) − f + Z′′
1g1 + 1

2
(Z′′

1)2H11

B = g2 + 1

2
Z′′

1H21

C = 1

2
H22.

Whether we are solving (12.5.7) or (12.5.8), we must determine the
solution points t of a quadratic inequality of the form

A + Bt + Ct2 ≤ 0 (12.5.9)

where A, B, and C are intervals. The solution set of (12.5.9) was derived
by Hansen (1980) in explicit form. Although his analysis was correct, there
are errors in his listed results. Denote A = [a1, a2]. His errors are for the
case a1 = 0. A correct form (with some simplifications) was given in the
first edition of this book. To list all the cases required almost a full page.
We gave a simpler procedure in Section 8.2. See also Hansen and Walster
(2001).

12.5.5 An Example

We have described four procedures for deleting points x where f (x)̇ > f.
Generally, none of these methods can delete all the points x of a box xI

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

where f (x) > f unless this inequality holds for all x ∈ xI. This is because

the complementary set in xI (where f (x) ≤ f) is generally not in the form

of a box. Nevertheless, the relation f (x) ≤ f can be very useful.
As an example, consider the objective function

f (x) = x2(2 + sin πx).

It is easily shown that the derivative f ′(x) of this function has a zero in the
interval [n, n+1] for all n = ±2, ±3, · · · . To see this, note that f ′(0) = 0,

f ′(±n) > 0 for n even and nonzero, and f ′(±n) < 0 for n odd and n ≤ 3.

Also, f ′(x) = 0 for x = 1.118, approximately. Thus, f́ ′ has at least 2n+1
zeros in the interval [−n, n] for all n = 1, 2,

Suppose we have sampled the value of f at x = 1. Since f (1) =
2, we have the upper bound f = 2 on f ∗. We can replace the relation

x2(2 + sin πx) ≤ f = 2 by

x2(2 + sin πx) = [−∞, 2].

Consider the interval X = [2, 1030]. To solve this equation using hull
consistency we can replace sin πx by sin πX = [−1, 1] and solve for the
factor x2. We obtain

(X′
1)

2 = [−∞, 2]/[1, 3] = [−∞, 2].

Since (X′
1)

2 must be nonnegative, we replace this equation by (X′
1)

2 =
[0, 2] from which X′

1 = [−21/2, 21/2].
Since X′ is disjoint from X, there is no point in X where f ≤ f.

Therefore, no point in X can be the global minimum. We have proved
this with one simple application of hull consistency. In so doing, we have
proved that the 1030 − 2 local extrema in X are not global minima.

Note that of the four methods described above, only the first can be
effective for this example. This is because the other methods use inter-
val bounds on derivatives; and these bounds contain zero for almost any
subinterval of X of unit width.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

12.6 UPDATING THE UPPER BOUND

In Section 12.5, we discussed how we can use an upper bound f on the
global minimum f ∗ to delete points that cannot be global minimum points.

We noted that whenever we generate a new subbox of the initial box xI(0),

we evaluate f at its center and use the value to update f. However, we can

also search for a point where f < f and use such a point to reduce f. In this
section, we discuss two ways that this can be done efficiently.

Suppose that before starting to solve an unconstrained optimization

problem by our algorithm, we know a value of f that is near or equal to the
global minimum f ∗. In this case, the solution is found more rapidly than
when no such initial value is known.

Walster, Hansen and Sengupta (1985) observed that obtaining a good

approximation f to f ∗ early in the process of solving an optimization prob-
lem did not greatly improve the efficiency of their algorithm. However,

they solved the relation f ≤ f by expanding f in Taylor series through first
or second derivative terms as in Section 12.5.4. As we note throughout this
book, using Taylor expansions in interval algorithms is generally effective

only when the box is small. Therefore, expanding f to solve f ≤ f is not
fruitful in the early stage of the solution process when the current box is

large. That is, having a good upper bound f early in the solution process
was not very helpful in their algorithm.

Using hull and box consistency changes the situation. If a value of f

near f ∗ is available, consistency methods can effectively reduce a box even
when the box is large. Therefore, it is now more important to have a good
approximation to f ∗ early in the solution process. Sampling a value of f

at the center of each new generated box serves to produce good values of f

fairly quickly. This is particularly true because of the way we choose which
box to process. See Section 12.12.

Because it is so helpful to have a small value of f, we also use other

procedures to reduce f. In one such procedure, we do a line search for a
point where f is small. We now describe this procedure.

Suppose we evaluate the gradient g(x) of f (x) at a point x. Note that

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

f decreases (locally) in the negative gradient direction from x. A simple
procedure for finding a point where f is small is to search along this half-
line. Let x be the center of the current box. Define the half-line of points
y(α) = x − αg(x) where α ≥ 0. We now use a standard procedure for
finding an approximate minimum of the objective function f on this half-
line.

We first restrict our region of search by determining the value α′ such
that y(α′) = x−α′g is on the boundary of the current box xI. We search be-
tween x and x′ = y(α′). We use the following procedure. Each application
of the procedure requires an evaluation of f .

Procedure: If f (x′) < f (x), replace x by (x+x′)/2. Otherwise, replace
x′ by (x + x′)/2.

We apply this procedure eight times. We then use the smaller of the

final values of f (x) and f (x′) to update f.

Much of this procedure can be done using rounded real arithmetic. The
evaluation of g(x) and the computations to do the search steps need only

be approximate. However, the final evaluation of f used to update f must
be done using interval arithmetic.

The other procedure that we use to update f uses data that are expen-
sive to compute. Therefore, we apply the procedure only when the data
are available because they have been computed for another purpose. The
relevant data are computed when we apply a Newton method to bound a
zero of the gradient g(x). When we do so, we compute the Jacobian J(x, xI)

and an approximate inverse B of the center of J(x, xI). See Section 11.2.
We also evaluate g at the center x of the current box xI. The data we require
consist of g(x) and B.

If the Newton method succeeds in obtaining a new box bounding the
solution of g = 0, we evaluate f at the center of the box and use the result

to update f. Regardless of whether the Newton step is successful or not, we
use the data already computed to obtain an additional test point at which to
evaluate f (x). This test point is the point y = x − Bg(x). It doesn’t matter
whether y is in the current box or not. In fact, y need not even be in the

initial box xI(0). Any point can be used to update f. This procedure can be
iterated. Steps of a method for doing so are given in Section 11.4.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We used a similar procedure in Section 11.4 to get an approximation
for a solution to a system of nonlinear equations.

We can iterate this step starting from the point y and use the same value
of B. However, this requires recomputing g(y)̇; and therefore we choose
not to do so.

Note that the computation of y from the quantities x, B, and g(x) can
be done using real arithmetic. Only the evaluation of f (y) must be done

using interval arithmetic so that f can be correctly updated.

12.7 CONVEXITY

If f (x) has a minimum at x∗, then f must be convex in some neighborhood
of x∗. Hence, the Hessian H of f must be positive semidefinite at x∗. A
necessary condition for this is that the diagonal elements Hii (i = 1, · · · , n)

of H be nonnegative. Note that H cannot be replaced by its counterpart in
an expansion using slopes.

Consider a box xI. If Hii(xI) < 0 for some i = 1, · · · , n, then Hii(x) <

0 for all x ∈ xI. Hence, H cannot be positive semidefinite for any point in
xI. Therefore, f cannot have a stationary minimum in xI and we can delete
xI. The concept of using convexity in this way was introduced by Hansen
(1980).

There are other conditions that H must satisfy to be positive semidefi-
nite. For example, the leading principal minors of H of all orders 1, · · · , n

must be nonnegative. (This is also a sufficient condition.) We could check
to see if one or more of these conditions is violated over xI and, if so, delete
xI. However, this extra effort is probably not warranted.

To use the convexity condition, we could simply evaluate Hii(xI). If
Hii(xI) < 0, for any i = 1, · · · , n, then xI cannot contain a minimum
of f and we might delete xI. However, for essentially the same amount
of effort, we can apply hull consistency to solve Hii(xI) ≥ 0. If hull
consistency proves that Hii(xI) < 0, then we can delete xI. Additionally,
hull consistency might be able to delete part of xI. Simply evaluating Hii(xI)

cannot reduce xI.
There is generally an extended region of points (a basin) at and near a

minimum of f in which f is convex. Using the conditions Hii(x) ≥ 0 does

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

not delete such points. Compare this with solving the condition g(x) = 0
on the gradient. The latter condition deletes all but isolated points. We
cannot expect the condition Hii(x) ≥ 0 to be as useful.

It is possible to linearize the set of inequalities Hii(x) ≥ 0 and use the
procedure in Chapter 6 to solve systems of linear inequalities. However,
linearization is generally worth doing only when the box over which a
function is linearized is small. When the box is small in a optimization
algorithm, it is probably because the box contains or is near a solution. In
this case, it is probably in the region where the objective function is convex.
That is, the condition Hii(x) ≥ 0 does not serve to delete points. Therefore,
we do not linearize this condition.

Nevertheless, it is worth applying hull consistency to Hii(x) ≥ 0 over a
box that is at least moderately large. Consider the one-dimensional function

f (x) = x6 − 15x4 + 27x2 + 250.

This is problem #1 of Levy et al (1981). Its “Hessian” is

f ′′(x) = 30x4 − 180x2 + 54,

which is positive for |x| < 0.5628 and for |x| > 2.384, approximately.
Therefore, hull or box consistency applied to f ′′(xI) ≥ 0 is not able to
delete any part of an interval X if |X| < 0.5628 or if |X| > 2.384.

However, f ′′(x) < 0 in the intervals ±[0.5628, 2.383]. If X intersects
one of these intervals, box consistency (when iterated) can delete this inter-
section. Depending on how hull consistency is implemented, it can delete
all or part of this intersection. For example, if X = [−1, 2] and we solve

30x4 − 180x2 + 54 = [0, ∞] (12.7.1)

for the term in the left member that is dominant over [−1, 2], we have

180x2 ∈ 30X4 + [−∞, 54] = [−∞, 534].

Since x2 must be nonnegative, we replace the right member by [0, 534].
Solving forx, we find thatx ∈ ±[0, 1.723]or, equivalently, [−1.723, 1.723].

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The intersection of this interval with the original one is [−1, 1.723]. Thus,
we have deleted part of the original interval. Iterating box consistency
produces the interval [−1, 0.5628] in the limit.

When applying hull consistency, we can solve (12.7.1) as a quadratic
in x2 and then solve for x. The interval zeros (as a function of x2) of

30x4 − 180x2 + [−∞, 54] = 0

are approximately [−∞, 0.3167] and [5.683, ∞]. Sincex2 ≥ 0,we replace
the first interval zero by [0, 0.3167]. The square roots of these intervals are
the solution intervals ±[0, 0.5628] and ±[2.384, ∞]. These are rounded
versions of the exact solutions. If the initial interval is [−a, a] with a >

2.384, the intersection of this result with [−a, a] reveals that no value of x

in the gap (0.5628, 2.384) can be a solution of the optimization problem.
Box consistency cannot prove this since the interval value of the function
at either endpoint ±a contains zero.

In the early stages of our optimization algorithm, we apply hull and box
consistencies to the relations Hii(x) ≥ 0 (i = 1, · · · , n). We stop doing so
when we expect that these relations will be of little or no use in reducing
boxes obtained subsequently. We now describe our procedure.

Consider a box xI generated by our optimization algorithm. Suppose
we find that Hii(xI) ≥ 0 for all i = 1, · · · , n. Then we assume that xI is
in a basin around a minimum of the objective function. Let wH denote the
largest such box so far generated at a given stage of the algorithm. We do
not use the relations Hii(xI) ≥ 0 for any box of width less than wH .

This is not a totally satisfactory procedure. If wH is determined when
seeking a solution in a large basin, we might fail to use Hii(xI) ≥ 0 outside
some other small basin. Moreover, the procedure can be useful in a small
box which does not contain a minimum of f . A more elaborate procedure
might be better. However, we use this simple one. Generally the relation
Hii(xI) ≥ 0 is of little use near a solution. It should not be serious if we
stop using it too soon.

There is another way in which we can use the condition Hii(xI) ≥ 0
that is necessary for convexity. We have noted that the gradient g of the
objective function f is zero at a minimum of f . One procedure for finding

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

such a point is to apply an interval Newton method to solve g = 0. See
Section 12.8.

To do so, we linearize g and solve

g(x) + J(x, xI)(y − x) = 0 (12.7.2)

for y. See Section 11.2. But the Jacobian J of g is the Hessian of the
objective function f . In Sections 7.4 and 12.7, we noted that the diagonal
elements of the Hessian must be nonnegative at a minimum That is, the
diagonal elements of JI

(
x, xI

)
must be nonnegative when expanding the

gradient of f .
Note that certain arguments of elements of JI

(
x, xI

)
are real (rather

than interval). See Section 7.4. That is why we denote the Jacobian by
JI
(
x, xI

)
rather than JI(xI). However, one element of JI

(
x, xI

)
in each of

its rows must have all its arguments as intervals. The sequential expansions
to obtain a row of JI

(
x, xI

)
can be ordered differently for each row so that

it is the diagonal element which has intervals for all its arguments.
We can now conclude that there is no minimum of f in xI if a diagonal

element of J
(
x, xI

)
is negative. In our minimization algorithm, this fact

is useful because we sometimes check to see if any diagonal element of
J
(
x, xI

)
is negative before we compute the remaining elements of J

(
x, xI

)
.

See Step 20 of the algorithm in Section 12.14. However, we can delete any
negative part of a computed interval value of a diagonal element of J

(
x, xI

)
.

This is a valid step whether or not xI contains a minimum of f .
Note that this modification of Jii(xI) is not valid if J is obtained using

slopes. This is one of the few cases in which derivatives have an advantage
over slopes.

12.8 USING A NEWTON METHOD

The solution of an unconstrained optimization problem occurs where the
gradient g of the objective function is zero. Therefore, we can apply an
interval Newton method to solve g(x) = 0 over a box xI in which we seek
a minimum. In a given step of our optimization algorithm, we apply a

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Newton step only if the current box is not “too large”. We decide if this is
the case by using the relation (11.11.1).

The gradient g is zero at any stationary point of the objective function f .
We do not want to spend effort to sharply bound such a point if it is not the
global minimum. Therefore, we do not want to iterate the Newton method
to convergence when solving (12.7.2). Instead, we want to alternate a step
of the method with other procedures that might prove a given stationary
point is not a global minimum.

Therefore, we make only one “pass” through the Newton method before
using other procedures. It is for this reason that we introduced the special
interval Newton method of Section 11.14. One “pass” consists of a single
application of that method.

The Jacobian can be singular at a global minimum. In this case, the
Newton method is not very effective in reducing a box that contains the
minimum. Our criterion for when to apply the Newton method causes it to
be less frequently used in this case.

12.9 TERMINATION

Because our optimization algorithm often splits a box into subboxes, the
number of stored unprocessed subboxes stored can grow. The algorithm
can entirely eliminate a given subbox. This generally keeps the number of
stored boxes from growing too large.

Splitting and reducing boxes eventually causes any remaining box to be
“small”. We require that two conditions be satisfied before a box is deemed
to be small enough to be included in the set of solution boxes. First, a box
xI must satisfy a condition

w(xI) ≤ εX (12.9.1)

where εX is specified by the user.
Second, we require

w[f (xI)] ≤ εf ; (12.9.2)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

that is, f (xI)−f (xI) ≤ εf where εf is also specified by the user. Condition
(12.9.2) guarantees that the globally minimum value f ∗ of the objective
function is bounded to within the tolerance εf . See Section 12.10.

Condition (12.9.1) can be replaced by a set of conditions w(Xi) ≤ εX

(i = 1, · · · , n). Thus, scaling can be taken into account and the conver-
gence condition can be dominated by the width of the bound on (say) a
single variable. Also, conditions (12.9.1) and (12.9.2) can be replaced or
augmented by relative error conditions.

If desired, a user can choose either εX or εf to be large. This enables a
single criterion to control termination.

Care must be taken that εf is not so small that rounding errors and/or
dependence preclude satisfying (12.9.2). Otherwise, the tolerances can be
chosen rather arbitrarily. If εX is small and εf is large, then (12.9.2) is
actually satisfied for a quantity smaller than εf because f does not vary
much over a small box. If εX is large and εf is small, then (12.9.1) is
satisfied for a quantity smaller than εX because (12.9.2) is not satisfied for
a large box. Having two tolerances merely allows the user to specify a
preference.

Termination conditions on solution boxes can essentially be dispensed
with altogether if we are not interested in the point(s) x∗ where the global
minimum occurs. Suppose, instead, we are interested only in bounding
f ∗. In this case we can modify the procedures of Section 12.5 and delete

subboxes where f (x) > f − εf instead of f (x) > f. This allows more

points to be deleted by the procedure than if we use the inequality f (x) > f.

Eventually, every point of the original box is deleted.

When this occurs, the final value of f is such that

f − εf ≤ f ∗ ≤ f.

That is, f ∗ is bounded to the required accuracy. Note that with this ap-
proach, we can dispense with computations required to check termination
conditions.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

12.10 BOUNDS ON THE MINIMUM

The algorithm provides both lower and upper bounds on the global mini-
mum f ∗. After termination, the solution box (or boxes) must contain the
global minimum. Suppose that some number s of boxes remain. Denote

them by xI(i) (i = 1, · · · , s).

The algorithm evaluates f (xI(i)) for each i = 1, · · · , s. Denote the
result by

f (xI(i)) = [f (xI(i)), f (xI(i))].

Denote

F = min
1≤i≤s

f (xI(i)).

The algorithm also evaluates f at (an approximation for) the center

of each box to update the upper bound f on f ∗. A box xI(i) is deleted if

f (xI(i)) > f. Therefore,

f (xI(i)) ≤ f ≤ f (xI(i)) (12.10.1)

for all i = 1, · · · , s.

Since the global minimum must be in one of the final boxes,

F ≤ f ∗. (12.10.2)

Let j be an index such that f (xI(j)
) = F . Letting i = j in (12.10.1), we

obtain

f ∗ ≤ f ≤ f (xI(j)
). (12.10.3)

From the termination condition (12.9.2),

f (xI(j)
) − f (xI(j)

) ≤ εf . (12.10.4)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

From (12.10.2), (12.10.3), and (12.10.4),

F ≤ f ∗ ≤ F + εf . (12.10.5)

Thus, the global minimum is bounded to within εf . In general, the upper

bound f on f ∗ is smaller than F + εf .

From (12.10.1) and (12.10.4), we conclude that

F ≤ f ≤ F + εf .

From this relation and (12.10.5), we see that f and f ∗ are in the same interval
of width εf . Therefore, using (12.10.3)

f ∗ ≤ f ≤ f ∗ + εf . (12.10.6)

That is, the upper bound f differs from the global minimum by no more
than εf .

Note that f ∗ ≤ f. This might be a sharper upper bound on f ∗ than that
given by (12.10.5).

From (12.10.1), (12.10.4), and (12.10.6), we conclude that f (x)−f ∗ ≤
2εf for each point x in each final box.

The accuracy specified in the above relations is guaranteed to be correct
for the results computed using our algorithm. This is because we use interval
arithmetic to bound rounding errors. In contrast, noninterval algorithms
generally cannot guarantee accuracy. This fact is illustrated by a published
paper in which run time for a noninterval algorithm is given to obtain eight
digit accuracy for the solution to a given problem. However, the reported
solution is correct to only four digits.

12.11 THE LIST OF BOXES

Our optimization algorithm normally begins its search in a single given box

xI(0)
. For simplicity, our discussion throughout this book usually assumes

this to be the case. We can also begin with a set of boxes wherein we seek
the global minimum. This is no disadvantage even if the region formed by

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

the set of starting boxes is not connected. We put the initial box(es) in a list
L1 of boxes to be processed.

As the algorithm progresses, it generally divides xI(0) into subboxes.
This might be done by direct splitting of a box or by removing a gap in
a component of a box that is proved to not contain the global minimum.
Such a gap might be generated by hull consistency, box consistency, or by
an interval Newton method.

Any box xI that satisfies the termination criteria

w(xI) ≤ εx (12.11.1a)

w[f (xI)] ≤ εf (12.11.1b)

(where f is the objective function) is put in a list L2. Any box for which
these criteria are not both satisfied is placed in a list L1 of boxes yet to be
processed. Assuming both εX and εf are small, boxes in L2 are small and
f varies very little over any one of them.

12.12 CHOOSING A BOX TO PROCESS

Whenever the algorithm generates a new box xI, it is placed in the appropri-
ate list as specified in the previous section. As a cycle of the main algorithm
begins, the box to be processed is chosen from the list L1. We now describe
how the choice is made.

Before the choice is made, the algorithm evaluates f (xI) for every
box xI in L1. Let [f (xI), f (xI)] denote the result. The box chosen to be

processed is the one for which f (xI) is smallest.
This procedure is more likely to pick the box containing the point x∗ of

global minimum than if a box is chosen at random from the list. Therefore,

we tend to get a good upper bound f for the global minimum f ∗ sooner
than for some other choice of box. This speeds convergence because the

procedures in Section 12.5 are more effective when f is smaller.
If the width w(xI) of a box xI is large, then f (xI) tends to be much

smaller than the smallest value of f (x) for any x ∈ xI. This is because of
dependence when evaluating f (xI). See Section 2.4. Therefore, when L1

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

contains large boxes, the procedure tends to pick either a box in which f

has some small values or else a box in need of reduction so that sharper
information can be obtained about f and its derivatives. This reduction
of xI occurs either because the box is reduced in size by the optimization
algorithm or because it is split into parts.

There are other “natural” ways to choose a box from L1. For example,
we can choose the box of largest width or the one that has been in L1 longest.
Experience has shown that the method described above is preferable.

12.13 SPLITTING A BOX

When the algorithm makes little or no progress in reducing the size of a
box xI, it splits xI into parts by dividing one or more component of xI into
smaller parts. We discussed splitting in Section 11.8. The reasons and
procedure for doing so are similar when solving an optimization problem
and a system of nonlinear equations.

Recall that, when solving systems of nonlinear equations, our procedure
for splitting depended on whether Newton’s method had been used in the
pass though the algorithm preceding the decision to split. This is again true
when solving an optimization problem.

If Newton’s method has been used, we have the information available
to use equation (11.8.1) as a criterion for which components of the box take
priority in splitting. This criterion is used here in the same way. The equa-
tions in the system being solved are the equations gi = 0 (i = 1, · · · , n)

expressing that the gradient of the objective function is to be zero. The Ja-
cobian elements in equation (11.8.1) are Jij = ∂gi/∂xj (i, j = 1, · · · , n).

Recall that when Newton’s method is used to solve nonlinear systems,
we split the box into n subboxes because we have information about how
to do so. If Newton’s method is not used, we had no such information. We
simply split the components of largest width. In the current optimization
case, we do have some information when Newton’s method has not been
used. The width of a gradient element is a measure of how much the
objective function changes over the box as a variable changes. This is not
of great import unless the box contains the global minimum.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We approximate the change in f resulting from the i-th variable chang-
ing over Xi. We use the rather crude approximation

Di(xI) = w[gi(xI)] w(Xi). (12.13.1)

where gi is the i-th component of the gradient of f . We split the compo-
nent(s) Xi (i = 1, · · · , n) of xI for which Di(xI) is largest.

This choice provides better efficiency of the optimization algorithm than
splitting the widest component of xI. Note that it tends to be independent
of variable scaling.

A virtue of this criterion is that little extra computing is required to
implement it. In Section 12.4, we noted that we get an approximation
for a gradient component gi(xI) evaluated over a box xI when applying
hull consistency to the equation gi(x) = 0. We use this approximation in
(12.13.1).

Hull consistency, box consistency, and the interval Newton method
can each generate a gap in a component of xI in which the solution to the
optimization problem cannot exist. Gaps generated by different procedures
might overlap. If so, they are merged. When a gap is deleted, two new
subboxes are generated. It is desirable to split a box using a gap because
we remove part of the region of search. However, if the gap is quite narrow,
little reduction in the search region is made. Therefore, we use a gap for
splitting only if it is sufficiently wide to satisfy criterion (11.8.2).

If a gap in the i-th component of a box is sufficiently wide to satisfy
(11.8.2), we regard it as one to be used in splitting regardless of the value
of Di(xI) from (12.13.1). If there are gaps in more than three components
of xI, we use (12.13.1) to select the three to be used in splitting. However,
instead of using w(Xi) in (12.13.1), we use the width of the gap in Xi .

If there are fewer than three components with gaps of sufficient width,
we use those that occur, and split one or more other components as described
earlier in this section.

Note that we do not split a component Xi of xI if it already satisfies
the condition w(Xi) ≤ εX and there are other components that do not.
However, if all components satisfy this condition, the algorithm might need
to continue splitting to satisfy the termination condition w[f (xI)] ≤ εf .
Any splitting is done as described in Section 10.8.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

12.14 THE ALGORITHM STEPS

In this section, we list the steps of our algorithm for solving the uncon-
strained optimization problem. The algorithm computes guaranteed bounds
on the globally minimum value f ∗ of the objective function f (x) and guar-
anteed bounds on the point(s) where f (x) is a global minimum.

Assume a given box or boxes in which the solution is sought is placed
in a list L1 of boxes to be processed. Set wR = 0 (see Section 11.11).

If a single box x(0) is given, set wI = w(xI(0)
). If more than one box is

given, set wI equal to the width of the largest one. If an upper bound on the

minimum value f ∗ of f (x) is known, set f equal to this value. Otherwise,

set f = +∞.
A box size tolerance εX and a function width tolerance εf must be

specified as described in Section 12.9 by the user.
Let wH be defined as in Section 12.7 on page 305. The algorithm sets

the initial value of wH = +∞. It also sets wR and wI .
We do the following steps in the order given except as indicated by

branching. For each step, the current box is denoted by xI even though it
might be altered in one or more steps.

1. Evaluate f at (an approximation for) the center of each initial box in

L1 and use the result to update f as described in Section 12.5.

2. For each initial box xI in L1, evaluate f (xI). Denote the result by

[f (xI), f (xI)]. Delete any box for which f (xI) > f

3. If L1 is empty go to Step 36. Otherwise, find the box xI in L1 for
which f (xI) is smallest. Select this box as the one to be processed

next by the algorithm. For later reference denote this box by xI(1).

Delete xI(1) from L1.

4. If hull consistency has been applied (in Step 6) n times to the relation

f (x) ≤ f without having done Step 9, go to Step 8. (The integer n is
the number of variables on which f depends.)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

5. Apply hull consistency to the relation f (x) ≤ f. If the result is empty,
delete xI and go to Step 3.

6. If w(xI) < εX and w[f (xI)] < εf , put xI in list L2 and go to Step 3.

7. If the box was sufficiently reduced (as defined using (11.7.4)) in Step
5, put the result in L1 and go to Step 3.

8. If hull consistency has been applied (in Step 9) n times to the com-
ponents of the gradient without having applied a Newton step (Step
21), go to Step 20.

9. Apply hull consistency to gi(x) = 0 (i = 1, · · · , n) for each com-
ponent gi(x) of the gradient of f (x). In so doing, use the procedure
described in Section 10.10 to bound gi over the resulting box for use
in Step 11. If a result is empty, delete xI and go to Step 3.

10. Use the center of the bounds on gI
i from Step 9 to do a line search

and update f as described in Section 12.6. If f is decreased, repeat
Step 5.

11. Using the bounds on gi(xI) (i = 1, · · · , n) obtained in Step 9, apply

the linear method of Section 12.5.3 to the relation f (x) ≤ f. If the
result is empty, go to Step 3.

12. Repeat Step 6.

13. If the current box xI is a sufficiently reduced (using (11.7.4)) version

of the box xI(1) defined in Step 3, put xI in list L1 and go to Step 3.

14. If w(xI) < wH go to Step 18. (Note that wH is defined in Section
12.7 on page 305.)

15. Apply hull consistency to the relation Hii(xI) ≥ 0 for i = 1, · · · , n.
If the result is empty, go to Step 3. If Hii(xI) ≥ 0 for all i = 1, · · · , n

(which implies that the result from hull consistency is not empty),
update wH as described in Section 10.7 and go to Step 19. [Note that
updating wH is done as follows: If wH = +∞, simply replace wH

by w(xI). Otherwise, replace wH by the larger of wH and w(xI).]

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

16. Repeat Step 6.

17. Repeat Step 13.

18. Repeat Steps 5 through 17 using box consistency (as described in
Section 10.2) in place of hull consistency. However, skip Steps 10
through 14. In Step 9, omit the process of obtaining bounds on gi(xI).

19. If w(xI) > (wI + wR)/2, go to Step 33. See (11.11.1).

20. Compute the Jacobian J(x, xI) of the gradient g. Order the variables
in each row of J

(
x, xI

)
so that it is the diagonal element for which

all arguments are intervals as described in Section 12.7 (and Section
7.4). If a diagonal element of J

(
x, xI

)
is strictly negative go to Step

3. Otherwise, delete any negative part of any diagonal element of
J
(
x, xI

)
. Compute an approximate inverse B of the approximate

center of J(x, xI) and the matrix M(x, xI) = BJ(x, xI).

21. If the matrix M(x, xI) is regular, find the hull of the solution set of
the linear system determined in Step 20 as described in Section 5.8.
If M(x, xI) is irregular, apply one pass of the Gauss-Seidel method
to the linear system. See Section 5.7. Update wI or wR as prescribed
in Section 11.11. If the result of the Newton step is empty, go to Step
3. If the interval Newton step proves the existence of a solution in xI

(see Proposition 11.15.5), record this information.

22. Repeat Step 6.

23. If the width of the box was reduced by a factor of at least 8 in the
Newton step (Step 21), go to Step 20.

24. Repeat Step 13.

25. Use the gradient value g(x) and the matrix B computed in Step 20 to
compute the point y = x − Bg(x). See Section 12.6. Use the value

of f (y) to update f.

26. Use the quadratic method of Section 12.5.4 to “solve” f (x) ≤ f

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

27. Repeat Step 6.

28. Repeat Step 13.

29. Using the matrix B computed in Step 20, analytically determine the
system Bg(x). Apply hull consistency to solve the i-th component
of Bg(x) for the i-th variable xi for i = 1, · · · , n. If this procedure
proves the existence of a solution in xI (as discussed in Section 10.12),
record this information. Note: If the user prefers not to do analytic
preconditioning, go to Step 36.

30. Repeat Step 6.

31. Repeat Step 13.

32. Apply box consistency to solve the i-th component of Bg(x) (as
determined in Step 29) for the i-th variable for i = 1, · · · , n.

33. Repeat Step 6.

34. Merge any overlapping gaps in components of xI if any were gen-
erated using hull consistency, box consistency, and/or the Newton
method.

35. Split the box xI as prescribed Section 12.13. If gaps that satisfy
(11.8.2) have been generated in any of these components, use the
gaps to do the splitting. Evaluate f at the center of each new box and
use the results to update f . Then go to Step 3. Note that if multiple
processors are use, the number of components to split might be more
than three. See Section 11.8.

36. Delete any box xI from list L2 for which f (xI) > f. Denote the

remaining boxes by xI(1)
, · · · , xI(s) where s is the number of boxes

remaining. Determine the lower bound for the global minimum f ∗

as F = min
1≤i≤s

f (xI(i)).

37. Terminate.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

12.15 RESULTS FROM THE ALGORITHM

After termination, F ≤ f ∗ ≤ f. Also, f (x) − f ∗ ≤ 2εf for every point x
in every remaining box. See Section 12.10. Also, w(xI) ≤ εX for every
remaining box.

A user might want a single point x̃ such that

||̃x − x∗|| ≤ ε1 (12.15.1)

and/or

f (̃x) − f ∗ ≤ ε2 (12.15.2)

for some ε1 and ε2. Recall that x∗ is a point such that f (x∗) = f ∗ is the
globally minimum value of the objective function f . Our algorithm might
or might not determine a point x̃ that fully satisfies (12.15.1) and (12.15.2).

If x̃ is any point in any final box, then f (̃x)−f ∗ ≤ 2εf . See (12.10.6).

Therefore, (12.15.2) can always be satisfied by choosing εf = 1
2ε2.

If there is only one final box xI, the algorithm assures that it contains
x∗. Therefore, we can choose x̃ to be any point in xI. Since w(xI) ≤ εX,
(12.15.1) is satisfied by choosing εX = ε1. Also, f (̃x) − f ∗ ≤ εf for any
x̃ ∈ xI because of the termination condition (12.9.2).

If there is more than one final box, we cannot necessarily satisfy equa-
tion (12.15.1). Let x̃ be any point in any final box. All we can assure
is that x̃ is no farther from x∗ than the maximum distance from x̃ to any
point in any final box. However, f (̃x) − f ∗ ≤ 2εf because this is true for
every point in every final box. Decreasing εX and εf and/or using higher
precision arithmetic might improve the bound on x̃ − x∗.

12.16 DISCUSSION OF THE ALGORITHM

The algorithm in Section 12.14 begins with procedures that involve the least
amount of computing. We use hull consistency first because it does not

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

require computation of derivatives (and because it is effective in reducing
large boxes).

For efficiency, the best box xI to process is the one for which f (xI) is

smallest. This tends to quickly reduce the upper bound f. Because it is

important to reduce f as quickly as possible, the algorithm returns to Step
3 frequently to determine the box to process next.

We stop using the relations Hii(x) ≥ 0 (i = 1, · · · , n) when there is
evidence that the remaining boxes are in a region where f is convex. See
Step 14. Using a similar philosophy, we begin using the Newton method
more often when there is evidence that it will be effective. See Steps 19
and 23.

Note that the Jacobian J(x, xI) is the Hessian of the objective function
f . Therefore, knowing J(x, xI) provides the means for determining the
second order Taylor expansion of f. The gradient g(x) needed for this
expansion is also computed when applying the Newton method in Step 21.

Therefore, we have the data required to use the quadratic method of

Section 12.5.4 to “solve” the relation f (x) ≤ f. See Step 26. If these data
are not already available, it might not be worth generating them simply to

solve f (x) ≤ f using the quadratic method.
The algorithm avoids too many applications of hull consistency before

changing procedures. Step 4 can force application of hull consistency to

the gradient instead of to the inequality f ≤ f. Step 8 can force change
from applying hull consistency to the gradient, to applying a Newton step.
This takes precedence over our desire not to apply a Newton step when it
might not be efficient.

We need occasional checks of efficiency of the Newton method because
the current box might become so small that the Newton method exhibits
quadratic convergence and thus is more efficient than hull consistency.
When we force a change from hull consistency, we also force a change
from box consistency. This occurs because we do not apply the latter
without having previously applied the former.

Step 23 causes the Newton step to be repeated. If the Newton method is
exhibiting quadratic convergence, we want to take advantage of its ability
to progress rapidly.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In a given pass through Step 23, the algorithm might have proved the
existence of a solution of the equation g(x) = 0. Such a “solution” can
be a stationary point of f that is not a global minimum. Suppose proof is
obtained for some box xI

E. If xI
E does not contain a global minimum, the

entire box xI
E might or might not be deleted by the algorithm. If L2 (in

Step 36) contains a single final box, it is the one containing a zero of g.

12.17 A NUMERICAL EXAMPLE

We now consider a numerical example. The well-known Beale function
can be found as problem #5 of Moré, Garbow, and Hillstrom (1981). It also
occurs as problem #2.1 of Schwefel (1981). The problem is to minimize

f (x, y) = [1.5 − x(1 − y)]2

+ [2.25 − x(1 − y2)]2 + [2.625 − x(1 − y3)]2.

Van Hentenryck et al. (1997) solved this problem using their algorithm
Numerica. Their initial box was given by X = Y = [−106, 106] and the
stopping criterion was given by εX = 10−8. We used these same param-
eters and chose εf large so that it did not affect our stopping procedure.
As a comparison criterion, we counted the number of boxes generated by
splitting. Numerica generated 356 boxes. The algorithm given in Section
12.14 generated 36 boxes. This is not a definitive comparison because the
computational effort per box is not compared.

Walster, Hansen, and Sengupta (1985) solved this problem beginning
with the much smaller box given by X = Y = [−4.5, 4.5] and obtained
a bounding box of width 10−11. This required 315 applications of the
interval Newton method (as well as other procedures). For the much larger
initial box of width 2 × 106, the algorithm of Section 12.14 needed only 18
Newton applications. Again, this is an incomplete comparison. However,
it illustrates the virtue of hull and box consistency when used together with
the interval Newton method.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

12.18 MULTIPLE MINIMA

Interval algorithms are capable of finding the global minimum of a function
with many local minima. Walster, Hansen, and Sengupta (1985) used an
earlier version of our algorithm to solve various optimization problems.
They report solving a ten dimensional problem in a box containing 1010

local minima and a single global minimum.
A given objective function can have more than one point where it takes

on its globally minimum value. If they are well separated, each global
minimum is isolated and separately bounded by our algorithm. Nearly
coincident but distinct solution points are separately bounded only if the
prescribed error tolerances are sufficiently small and word length of the
computer is adequate.

A function can have a continuum of global solution points. If the error
tolerances are small, then, in this case, our algorithm computes a large
number of boxes covering the set of solution points. A user might want
such a result in which a solution region is mapped out by small “pixels”.
However, it is possible to avoid such a result by bounding f ∗ only, but not
x∗. We can modify the procedure in Section 12.5 to eliminate points x for

which f (x) > f − εf rather f (x) > f. This causes all points in the initial
box to be eliminated. That is, we preclude the need to determine the large
set of boxes covering the continuum of solution points.

Using this option, we bound the global minimum f ∗ by f−εf ≤ f ∗ ≤ f.

Since the upper bound f is obtained at some point x, we have a representative
point where the value of f is within εf of f ∗. Walster, Hansen and Sengupta
(1985) discuss this option and provide an example of its use.

12.19 NONDIFFERENTIABLE PROBLEMS

Various procedures in the algorithm given in Section 12.14 require some
degree of continuous differentiability of the objective function f . If this
is not the case certain procedures must be omitted. For example, to apply
box consistency or a Newton method to solve g(x) = 0 (where g is the
gradient of f), f must be twice continuously differentiable. Exceptions

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

might occur if g exists but is not differentiable. In this case, it might be
possible to expand g in slopes rather than derivatives. See Section 7.7.

The algorithm solves the global optimization problem even if f is not
differentiable. But, in this case the algorithm is slower. Applying hull

consistency to the relation f (x) ≤ f does not require differentiability. This
procedure alone (with box splitting) can solve the problem. For an example
in which this procedure performs well, see Section 12.5.5.

Sometimes, a nondifferentiable objective function can be replaced by
one having differentiability. See Section 18.1.

12.20 FINDING ALL STATIONARY POINTS

There are applications in which one wants to find all stationary points of a
function. There are other applications in which one wants to find all local
minima whether they are global or not. In this section, we discuss how our
procedures can be applied to compute such results.

Note that all stationary points of a function in a box can be found by
applying the procedure in Section 11.12 to solve the system of equations
formed by setting to zero the components of the gradient of the given
function. However, our optimization algorithm can also be used for this
purpose.

In Section 12.5, we discussed how an upper bound on the global min-
imum can be used to delete local minima. If we omit the procedures of
Section 12.5 from the algorithm of Section 12.14, the resulting algorithm
finds all (global or local) minima of the objective function in the initial box.

If we wish to find all stationary points of the objective function, we
can do so by omitting an additional procedure. We also omit the procedure
described in Section 12.7 that deletes points of the box at which the objective
function is not convex.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 13

CONSTRAINED
OPTIMIZATION

13.1 INTRODUCTION

In this chapter, we consider the constrained optimization problem

Minimize f (x) (13.1.1)

subject to pi(x) ≤ 0 (i = 1, · · · , m) ,

qi(x) = 0 (i = 1, · · · , r) .

We assume f (x) is twice continuously differentiable and that the constraint
functions pi(x) and qi(x) are continuously differentiable.

As in the unconstrained case, we assume an initial box xI(0) is given. We

seek the global minimum of f (x) in xI(0) subject to the given constraints. If
an inequality constraint in (13.1.1) is of the form a − xi ≤ 0 or xi − b ≤ 0,

then this determines a side of xI(0).
Unless a side of xI(0) is explicitly prescribed to be an inequality con-

straint, this particular bound is not regarded as a constraint. Instead, it
merely restricts the region of search. We assume the box is sufficiently large
to contain any global solution point of the problem as given by (13.1.1).

As in the unconstrained case, the initial box can generally be chosen
quite large without seriously degrading the performance of the optimization

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

algorithm. If no initial box is given, we assume each of its components (not
specified by an inequality constraint) is

[−N,N
]

where N is the largest finite
number representable on the computer used to solve the problem.

Our approach is the same as in the unconstrained case. We delete

subboxes of xI(0) that cannot contain the global solution. We stop when
the bounds on the location of the solution and the bounds on the globally
minimum value of f are small enough to satisfy user specified tolerances.

Our algorithms for constrained and unconstrained problems use so
many of the same subroutines that we use a single program to solve both
types of problem. We call those subroutines that are relevant for a par-
ticular problem. However, for pedagogical reasons, we describe separate
algorithms for constrained and unconstrained problems.

Robinson (1973) was the first to use interval arithmetic to bound round-
ing errors in obtaining an approximate solution of (13.1.1). However, he
did not otherwise use interval methods to compute the solution. He also
did not attempt to find the global solution.

An important problem in interval analysis is that of bounding the range
of a function over a given box. We can cast this problem as two optimization
problems in which we want both the minimum and maximum of the function
subject to box constraints.

Methods for bounding the range of a function over a box can be regarded
as the first interval methods for global optimization. Thus, it can be said
that the effort to use interval analysis to solve a global optimization began
with Moore (1966). However, this approach does not include constraints.

A discussion of this special problem and methods for it can be found in
Ratschek and Rokne (1984). We do not discuss these methods. One reason
is that there is no effort to find the location of the global solution. Only
bounds on a function over a box are sought. A more general discussion
of interval methods for global optimization can be found in Ratshek and
Rokne (1988). They discussed some of the easily implemented procedures
derived in Hansen (1980) that suffice for finding a solution. However,
they omitted other more effective (but more complicated) procedures that
enhance performance.

Hansen and Sengupta (1980) first used interval methods of the kind
considered herein to solve the inequality constrained problem. See also

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Hansen and Walster (1992b). We discuss this special case in Chapter 14.
We discuss the equality constrained case in Chapter 15. See also Hansen and
Walster (1992a, b, c). For a more recent discussion of global optimization
with details on software implementation of interval procedures, see Kearfott
(1996).

13.2 THE JOHN CONDITIONS

In this section, we discuss the John conditions that necessarily hold at a
constrained (local or global) minimum. We use these conditions in solving
problem (13.1.1). We write the John conditions as

u0∇f (x) +
m∑

i=1

ui∇pi(x) +
r∑

i=1

vi∇qi(x) = 0, (13.2.1a)

uipi(x) = 0 (i = 1, · · · , m) , (13.2.1b)

qi(x) = 0 (i = 1, · · · , r) , (13.2.1c)

ui ≥ 0 (i = 0, · · · , m) (13.2.1d)

where u0, · · · , um, v1, · · · , vr are Lagrange multipliers.
The John conditions differ from the more commonly used Kuhn-Tucker-

Karush conditions because they include the Lagrange multiplier u0. If we
set u0 = 1 and omit the normalization condition (13.2.2a) or (13.2.2b)
below, then we obtain the Kuhn-Tucker-Karush conditions.

When the Kuhn-Tucker-Karush conditions are used, it is assumed that
the binding constraints are not linearly dependent at a minimum. That is,
constraint qualifications are imposed. For definitions and discussion of
these terms and concepts, see, for example, Bazaraa and Shetty (1979).

We prefer not to restrict the set of problems considered by imposing
constraint qualifications. A problem with linearly dependent binding con-
straints can arise in practice. If so, an optimization algorithm (including
ours) can fail to find the global minimum if it assumes otherwise. We avoid
such failure by using the John conditions.

For a discussion of the Kuhn-Tucker-Karush conditions in an interval
context, see Mohd (1990).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The John conditions do not normally include a normalization condition.
Therefore, there are more variables than equations in (13.2.1a) through
(13.2.1d). One is free to remove the ambiguity in whatever way desired.
A normalization can be chosen arbitrarily without changing the solution
x of the John conditions. For reasons given in Sections 13.3 and 13.5, we
consider two separate normalizations.

The first normalization is linear; but it is not as simple as one might
expect. As we discuss in the next section, we use

u0 + · · · + um + E1v1 + · · · + Ervr = 1 (13.2.2a)

where Ei = [1, 1 + ε0] for all i = 1, · · · , r. The constant ε0 is the smallest
positive machine number such that in the number system on the computer
used, 1+ε0 is represented as a number > 1. Actually a slightly larger value
for ε0 can be used without error and without seriously degrading sharpness.

The second normalization is

u0 + · · · + um + v2
1 + · · · + v2

r = 1. (13.2.2b)

13.3 NORMALIZING LAGRANGE MULTIPLIERS

In this section, we discuss normalization of the Lagrange multipliers and
explain why the linear normalization (13.2.2a) takes the given form. The
normalization is due to Hansen and Walster (1990a).

If no equality constraints are present in problem (13.1.1), the normal-
ization equation (13.2.2a) becomes

u0 + · · · + um = 1.

Since the Lagrange multipliers ui (i = 0, · · · , m) are nonnegative (see
(13.2.1d)), this assures that

0 ≤ ui ≤ 1 (i = 0, · · · , m) .

These bounds on ui are useful in our algorithm.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The multipliers vi (i = 1, · · · , r) can be positive or negative. There-
fore, we cannot use the normalization

u0 + · · · + um + v1 + · · · + vr = 1

since the left member might be zero for the solution to a given problem.
A possible alternative normalization is

u0 + · · · + um + |v1| + · · · + |vr | = 1. (13.3.1)

However, we want a normalization equation that is continuously differen-
tiable so we can apply an interval Newton method to solve the John condi-
tions. Therefore, we reject this alternative normalization and use (13.2.2a)
or (13.2.2b).

To explain why the normalization (13.2.2a) has the form it does, con-
sider the sum

S = u0 + · · · + um + v1 + · · · + vr . (13.3.2)

We want to use the simple normalization S = 1. However, if S = 0 (at
a solution), we have a contradiction.

In Section 13.2, we define the intervalE = [1, 1+ε0]where the constant
ε0 is the smallest positive machine number such that in the number system
of the computer, 1 + ε0 is represented as a number > 1.

Even when S = 0, there are numbers ei ∈ Ei = E (i = 1, · · · , r) such
that

u0 + · · · + um + e1v1 + · · · + ervr = 1 (13.3.3)

after an appropriate renormalization of the Lagrange multipliers. Since this
equation is contained in the interval equation (13.2.2a), the normalization
(13.2.2a) is valid when S = 0. It is obviously valid when S �= 0.

Since Ei = E = [1, 1 + ε0] for all i = 1, · · · , r , one might be tempted
to write (13.2.2a) in the factored form

u0 + · · · + um + E(v1 + · · · + vr) = 1.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

If both u0 + · · · + um = 0 and v1 + · · · + vr = 0, then there is no e ∈ E

such that

u0 + · · · + um + e(v1 + · · · + vr) = 1.

Therefore, we must not use the factored form. By using the non-factored
form (13.2.2a), we use the fact that interval arithmetic is not distributive.
This is an example of the need to carefully distinguish between interval
variables that are independent and those that are not. (See Chapter 4.)

Suppose we apply our optimization algorithm to a subbox xI of the

initial box xI(0). Suppose also that, for any solution in xI, the interval
bounds uI

i on ui (i = 0, · · · , m) and bounds vI
i on vi (i = 1, · · · , r) hold

and that

0 /∈ uI
0 + · · · + uI

m + vI
1 + · · · + vI

r .

Then we know that S �= 0 for any solution point in xI. Therefore, whenever
considering xI or a subbox of xI, we replace the normalization condition
(13.2.2a) by the simpler condition S = 1.

The other normalization we consider is given by (13.2.2b). It has value
because it immediately provides useful bounds on the Lagrange multipliers.
Since ui ≥ 0 (i = 0, · · · , m), (13.2.2b) yields the bounds

0 ≤ ui ≤ 1 (i = 0, · · · , m) ,

−1 ≤ vi ≤ 1 (i = 1, · · · , r) . (13.3.4)

The undesirable feature of this normalization is that it is not linear. In
Section 13.5, we show why this is a drawback. In Section 15.2, we discuss
another advantage of the linear normalization (13.2.2a).

For convenience, we express the two normalizations (13.2.2a) and
(13.2.2b) in terms of functions. Thus, we define

R1(u, v) = u0 + · · · + um + Ev1 + · · · + Evr − 1 (13.3.5)

and

R2(u, v) = u0 + · · · + um + v2
1 + · · · + v2

r − 1. (13.3.6)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We solve the John conditions using an interval Newton method. See
Section 13.5. When we do so, we linearize the equations to be solved. The
bounds (13.3.4) enable us to use a linearized version of (13.2.2b) that we
express using R2(u, v) as given by (13.3.6). Expanding R2(u, v) using the
Taylor expansion (7.3.6), we obtain

R2(u, v) ∈ R2(u′, v′) + (u0 − u′
0) + · · · + (um − u′

m)

+ 2V1(v1 − v′
1) + · · · + 2Vr(vr − v′

r), (13.3.7)

which is valid for all u ∈ uI and all v ∈ vI where uI and vI are interval
vectors and Vi (i = 1, · · · , n) is the i-th component of vI. The real vectors
u′ ∈ uI and v′ ∈ vI are fixed. Using the bounds (13.3.4), we see that we
can replace condition (13.2.2b) by its an expansion in the form

R2(u′, v′) + (u0 − u′
0) + · · · + (um − u′

m) + [−2, 2](v1 − v′
1) + · · ·

+ [−2, 2](vr − v′
r) = 0. (13.3.8)

By now, readers have observed that it is far simpler to use the normal-
ization u0 = 1 than to normalize as we have done. This can be done. It
produces the Kuhn-Tucker-Karush conditions. It simplifies the formulation
and slightly improves the efficiency of the algorithm. The only difficulty
with using u0 = 1 is that we might fail to find the global minimum in
the rather rare case in which the constraints are linearly dependent at the
solution. Consistent with the promise of or interval algorithms to never fail
to produce bounds on the set of all problem solutions, we choose not to
risk failing to find the global solution in this special circumstance. Con-
sequently, we do not use the normalization u0 = 1. Instead, we avoid this
risk by performing the extra computation required to use either (13.2.2a)
or (13.2.2b).

There is another simple expedient. We can write the equality constraints
qi(x) = 0 (i = 0, · · · , r) as two inequality constraints qi(x) ≤ 0 and
−qi(x) ≤ 0. Now all constraints are inequality constraints. Therefore, we
can use the simple normalization

u0 + · · · + us = 1

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

where s = m + 2r and the initial bounds are 0 ≤ ui ≤ 1 (i = 1, · · · , s).
We have not used this expedient because it introduces r extra Lagrange
multipliers.

13.4 USE OF CONSTRAINTS

When we solve an optimization problem, we seek a solution x∗ in a given
box xI. When we do so, we apply hull consistency (see Chapter 10) to
the constraints over the box xI. Therefore, xI is deleted in the process of
applying hull consistency if it is certainly infeasible.

Also, we might have found that pi(xI) < 0 for some inequality con-
straint. If so, then pi(x) < 0 for all x ∈ xI, which implies that this particular
constraint cannot be active at any point x ∈ xI. Such a constraint can be
ignored when trying to find a solution to the optimization problem in xI.

Whenever we discuss solving the John conditions, we assume that such in-
equality constraints have been omitted. However, for simplicity, we still use
the letter m to denote the number of possibly active inequality constraints
being considered.

13.5 SOLVING THE JOHN CONDITIONS

We now consider use of an interval Newton method to solve the portion
of the John conditions given by Equations (13.2.1a) through (13.2.1c). We
include either (13.2.2a) or (13.2.2b). The remaining conditions ui ≥ 0
(i = 1, · · · , m) are not part of this computation since they are not equations.
They are used after the equations are solved. Our discussion parallels that
of Hansen and Walster (1990b).

We specify whether the normalization is given by (13.2.2a) or (13.2.2b),
but only when it matters which normalization is used.

From the vectors x = (x1, · · · , xn)
T , u = (u0, · · · , um)T , and v =

(v1, · · · , vr)
T , we define the partitioned vectors

w =
[

u
v

]

, t =
[

x
w

]

=



x
u
v



 .

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We write the John conditions (13.2.1a) through (13.2.1c) and (13.2.2) in
terms of the vector t.

To do so, we change the notation of the normalization functions (13.3.5)
or (13.3.6) from Rk (u, v) to Rk(t) (k = 1 or 2). Thus, we write the relevant
John conditions (with k = 1 or 2) as

φ(t) =



















Rk(t)

u0∇f (x) +
m∑

i=1
ui∇pi(x) +

r∑

i=1
vi∇qi(x)

u1p1(x)
...

umpm(x)

q1(x)
...

qr(x)



















(13.5.1)

Denote N = n+m+ r +1. Let tI be an N -dimensional box containing
the vector t. Let J(t, tI) denote the Jacobian of φ(t). As pointed out in
Section 7.4, the elements of J(t, tI) can be expressed as

Jij (t, tI) = ∂

∂tj
φi(T1, ...Tj , tj+1, · · · , tN)̇ (13.5.2)

for i, j = 1, · · · , N , where φi (t) is the i-th component of φ (t). Note that
N − j of the arguments of Jij (t, tI) are real.

Suppose we use the linear normalization (13.2.2a) in defining φ(t).
That is, suppose the first component of φ(t) is R1(t) as given by (13.3.5).
By choosing the Lagrange multipliers to be the arguments that are real in
(13.5.2), we assure the elements of J(t, tI) do not involve the Lagrange
multipliers as intervals. Because of this fact, no initial bounds for the
Lagrange multipliers are needed to solve the equation φ(t) = 0. Note that
such bounds are needed only if an appropriate interval Newton method is
used.

The Krawczyk and Gauss-Seidel interval Newton methods are not ap-
propriate because they require initial bounds on all (except one) of the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

variables. See Section 11.2. Gaussian elimination or the hull method of
Section 5.8 is appropriate.

An expansion using slopes (see Section 7.7) can also be obtained in such
a way that a variable occurring linearly in the function being expanded does
not occur as an interval in the “Jacobian”.

Alternatively, suppose we use the nonlinear normalization (13.2.2b).
Then the Lagrange multipliers occur as intervals in the Jacobian of the John
conditions. Every additional interval introduced into a system of equations
increases the chance that the Jacobian of the system is irregular. When the
Jacobian is irregular, an interval Newton method is either unable to obtain
a solution or is less efficient. In this case, it is more often necessary to split
the components of the box in some way. But, if we have to split the interval
bounds on the Lagrange multipliers as well as those of the other variables,
a great deal of extra computing might be necessary. Therefore, the linear
normalization is the better choice.

When the linear normalization is used, a step of an interval Newton
method provides bounds on the Lagrange multipliers. See the next section.
Thereafter, any variant of an interval Newton method can be used.

Assume the Jacobian elements are computed as defined in (13.5.2). To
avoid having the Lagrange multipliers occur as intervals in the Jacobian, it
is essential to order the variables so that the vector variables u and v occur
after x when defining t.

Consider boxes (of appropriate dimensions) xI, uI, and vI bounding the
vectors x, u, and v, respectively. They define a box

tI =



xI

uI

vI



 .

We linearize φI as

φI(t0) + J(t0, tI)(t − t0) = 0 (13.5.3)

where t0 is a real vector in tI and the Jacobian J(t0, tI) is given by (13.5.2).
A good choice for t0 is the center of tI.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Assume we use the linear normalization (13.2.2a). Suppose we solve
(13.5.3) using a Newton method from Chapter 11 for which Proposition
11.15.5 holds. Denote the result by tI′. If tI′ ⊂ tI, we have proof of the
existence of a solution of φ(t) = 0 for t ∈ tI′. This condition tI′ ⊂ tI can
be expressed as xI′ ⊂ xI, uI′ ⊂ uI, and vI′ ⊂ vI. However, we do not define
uI or vI when the linear normalization (13.2.2a) is used as indicated.

We can assume that each component of vI is [−∞, ∞] and therefore,
the condition vI′ ⊂ vI is satisfied for any finite vI′. However, the relation
(13.2.1d), which is part of the John conditions, states that ui ≥ 0 for all
i = 1, · · · , m. Therefore, we must assume that uI ≥ 0. This implies that
the condition uI′ ≥ 0 must be satisfied to prove existence of a solution of
φ(t) = 0.

On the other hand, if uI′
i < 0 for any i = 1, · · · , m, there can be no

solution of φI(x) = 0 for t in tI. In this case, we can delete xI. We obtain uI′

from a Newton step no matter what normalization we use for the Lagrange
multipliers

If the Jacobian of φI contains a singular matrix (i.e., is not regular), then
the solution set of (13.5.3) is unbounded. In this case, Gaussian elimination
or the hull method of Section 5.8 fails. If we use the normalization (13.2.2b),
the presence of interval bounds for the Lagrange multipliers makes it more
likely that the Jacobian is irregular. This is yet another argument in favor of
the linear normalization (13.2.2a). On the other hand, when the Jacobian
is irregular, it is sometimes possible to improve the bounds on some of the
components of t using a Gauss-Seidel step. This is not possible without
bounds on the multipliers.

13.6 BOUNDING THE LAGRANGE MULTIPLIERS

When we use the linear normalization condition (13.2.2a), then some forms
of the interval Newton method do not need initial bounds on the Lagrange
multipliers. However, there are three ways in which computed bounds can
be useful. First, suppose we obtain a bound Ui on a Lagrange multiplier ui

and find that Ui < 0. Then condition (13.2.1d) is violated for all ui ∈ Ui ;
and there cannot be a solution in whatever box xI is used to compute Ui .

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Such a result can be obtained whether or not there are input bounds on
the Lagrange multipliers. Of course, if there are input bounds on u and v,
there are more such ways to prove nonexistence of a solution of the John
conditions.

Second, if we choose to apply hull consistency or box consistency to
the John conditions, we need bounds on the multipliers. In our algorithm,
we do not apply hull or box consistency to the John conditions per se.
However, we do apply them to constraint equations. A user can choose to
apply them to the John conditions.

Although we do not need bounds on the Lagrange multipliers to apply
some forms of Newton’s method to solve the John conditions, we do need
estimates. A third way to use bounds on the multipliers is to use the midpoint
of an interval bound of a multiplier as an estimate for its value.

In this section, we show how such bounds can be computed. The
procedure is relevant only when the linear normalization is used.

When we compute bounds on the Lagrange multipliers, they are valid
for all points in a given box xI. Suppose that, later, we have a box xI′ that
is a subbox of xI. Then the bounds on the multipliers for points in xI are
bounds for points in xI′. Therefore, it is not necessary to use the procedure
of this section when processing xI′.

We noted in Section 13.5 that by solving φ(t) = 0 (as given by (13.5.1))
using an interval Newton method, we can compute bounds on the Lagrange
multipliers. This requires that we successfully solve the linearized Equation
(13.5.3) when using Gaussian elimination or the hull method. We now
consider an alternative procedure due to Hansen and Walster (1990) for
computing such bounds. It involves fewer equations than those in the
relation φ(t) = 0.

Instead of using all of equations (13.2.1a) through (13.2.1c) and (13.2.2a)
or (13.2.2b), we use only (13.2.1a) and (13.2.2a). Thus, the number of equa-
tions is reduced from n + m + r + 1 to n + 1. We assume that m + r ≤ n.

Assume we seek a solution of the minimization problem (13.1.1) in a

subbox xI of the initial box xI(0)
. Let x be a point in xI. Define the (n + 1)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

by (m + r + 1) matrix

A(x) =
[

1 1 · · · 1 E1 · · · Er

∇f (x) ∇p1(x) · · · ∇pm(x) ∇q1(x) · · · ∇qr(x)

]

.

where Ei (i = 1, · · · , r) is defined in Section 13.2. Equations (13.2.2a)
and (13.2.1a) can be written

A(x)w = e1 (13.6.1)

where e1 = (1, 0, · · · , 0)T is a vector of n + 1 components and

w =
[

u
v

]

has m + r + 1 components.
Consider the set of vectors w satisfying (13.6.1) as x ranges over xI.

This set contains the vector of Lagrange multipliers that satisfy the John
conditions for any x ∈ xI. We replace x by xI in (13.6.1) and obtain

A(xI)w = e1. (13.6.2)

The solution of this equation provides the desired bounds on the Lagrange
multipliers.

We wish to apply Gaussian elimination to this equation to transform the
(nonsquare) coefficient matrix into upper trapezoidal form. To do so, we
precondition the problem by multiplying by a real transformation matrix as
described for the square matrix case in Section 5.6.

Let Ac denote the center of A(xI). Using (real) Gaussian elimination
with row interchanges, we determine a matrix B that transforms Ac into up-
per trapezoidal form. We then apply interval Gaussian elimination (without
row interchanges) to the preconditioned equation

BA(xI)w = Be1

to transform its coefficient matrix into upper trapezoidal form.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

This procedure can fail because of division by an interval containing
zero. If so, we abandon the procedure. The main optimization algorithm
either reduces the size of the box xI or splits it into subboxes. The current
procedure might then succeed when applied to one or more of the resulting
subboxes.

If the elimination procedure is successful, it produces an equation that
we write in partitioned form as

[
RI

0

]

w =
[

bI
1

bI
2

]

(13.6.3)

where RI is a square upper triangular matrix of order m+r +1. The vectors
bI

1 and bI
2 have m + r + 1 and n − m − r components, respectively. The

zero block in the new coefficient matrix has n − m − r rows and m + r + 1
columns. It is absent if m + r = n.

Consider the case m + r < n. From (13.6.3)

RIw = bI
1 (13.6.4a)

0 = bI
2. (13.6.4b)

If 0 /∈ bI
2, then (13.6.4b) is inconsistent. This implies that there is no

solution to the John conditions for any x ∈ xI. Therefore, we stop this
procedure and delete xI.

If 0 ∈ bI
2, there might be a solution for some x ∈ xI. If so, then bI

2 = 0
for this point and we need only consider (13.6.4a) to compute bounds on the
corresponding Lagrange multipliers. This equation can be solved by back
substitution for interval bounds on w. Thus, we obtain a box uI bounding
u and a box vI bounding v.

The John conditions include the conditions ui ≥ 0 for i = 0, · · · , m.
Denote the components of uI by Ui = [ui, ui]. If ui < 0 for some i =
0, · · · , m, then (13.2.1d) is violated; and there is no solution of the John
conditions for any x ∈ xI. Therefore, we delete xI.

Bounds on the Lagrange multipliers can sometimes be used to simplify
the John conditions (13.2.1b). Suppose that, for some box xI, we compute
an interval vector uI bounding u. Suppose that ui > 0 for some i =

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

1, · · · , m. Then ui > 0 for any solution in xI, and the complementary
slackness condition uipi(x) = 0 (see (13.2.1b)) can be replaced by the
simpler equation pi(x) = 0 for any box contained in xI.

13.7 FIRST NUMERICAL EXAMPLE

In this section, we give a numerical example illustrating the ideas of Section
13.6. Consider the problem

Minimize f (x) = x1 (13.7.1)

subject to p1(x) = x2
1 + x2

2 − 1 ≤ 0,

p2(x) = x2
1 − x2 ≤ 0.

The solution is at

x∗
1 = −

(
51/2 − 1

2

)1/2

� −0.786,

x∗
2 = 51/2 − 1

2
� 0.618.

Since there are no equality constraints, our normalization for the La-
grange multipliers is

u0 + u1 + u2 = 1. (13.7.2)

The solution values for the Lagrange multipliers are

u∗
0 = 2x∗

1

2x∗
1 − 1

� 0.611,

u∗
1 = 1

(1 − 2x∗
1)[1 + 2(x∗

1)2] � 0.174,

u∗
2 = 1 − u∗

0 − u∗
1 � 0.215.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In this example, we use the normalization condition (13.7.2) to explicitly
eliminate u0. the John conditions then become

1 − u1 − u2 + 2x1(u1 + u2) = 0,

2x2u1 − u2 = 0, (13.7.3)

u1p1(x) = 0,

u2p2(x) = 0.

Consider the box xI with components X1 = [−0.8, −0.7] and X2 =
[0.6, 0.7] that contains the solution. In the absence of information about
the Lagrange multipliers, we guess they are all equal. That is, we guess
u0 = u1 = u2 = 1/3. One step of the interval Newton method applied
to equations (13.7.3) yields the bounding intervals (recorded to only three
digits)

U1 = [0.138, 0.201], U2 = [0.179, 0.240]

for the Lagrange multipliers and the improved bounds

X′
1 = [−0.799, −0.753], X′

2 = [0.600, 0.659]

for the components of the solution point.
Since X′

1 ⊂ X1 and X′
2 ⊂ X2, we have proved that a solution exists

in the new box X′
1. See Proposition 11.15.5. To invoke this proposition,

we implicitly assume that the initial bounding interval on each Lagrange
multiplier is [0, ∞].

In practice, we use other subroutines (see Chapter 14) to improve
bounds on the solution point and on the Lagrange multipliers. We do not
simply iterate the interval Newton method. However, if we do continue
iterating, three more steps bound the components of x∗ and of u∗ to an
accuracy of 10 digits past the decimal.

If a better approximation for u∗ is available, faster convergence occurs.
See Hansen and Walster (1990a).

This example shows how, given a box xI, we can not only improve the
bounds on a solution point in xI but also compute bounds on the Lagrange

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

multipliers for any solution to the optimization problem in xI. We need only
very crude approximations for the Lagrange multipliers.

The method of Section 13.6 does not require an approximation for the
Lagrange multipliers. Using the same initial box xI and solving (13.6.2) by
Gaussian elimination as described in Section 13.6, we obtain

U1 = [0.160, 0.190], U2 = [0.209, 0.244].
No new bounds on the solution point are obtained by this procedure. There-
fore, we cannot improve the bounds on uI by iterating.

Next, consider the box xI with components X1 = [−0.9, −0.8] and
X2 = [0.5, 0.6]. This box does not contain a solution. Using the good
approximations u1 = 0.174 and u2 = 0.215 (and, implicitly, u0 = 0.611),

one interval Newton step yields a solution box disjoint from xI. This proves
that no solution of the optimization problem (13.7.1) exists in xI.

We now consider a final case for this example. This time, we do not
eliminate u0 using the normalization condition. Consider the box xI with
components X1 = [−0.7, −0.6] and X2 = [0.7, 0.8]. This box does not
contain a solution of (13.7.1). Evaluating p2 over the box, we obtain
p2(xI) = [−0.44, −0.21]. Since p2(xI) < 0, the constraint p2 ≤ 0 is
not active for any point in xI. However, 0 ∈ p1(xI). Dropping the inactive
constraint, equation (13.6.2) becomes




1 1
1 [−1.4, −1.2]
0 [1.4, 1.6]





[
u0

u1

]

=



1
0
0



 .

Let us omit preconditioning. Using interval Gaussian elimination to
transform this coefficient matrix into upper trapezoidal form, we obtain




1 1
0 [−2.4, −2.2]
0 0





[
u0

u1

]

=



1
1

[−0.728, −0.577]



 .

The third component of the right member does not contain zero. This proves
that no solution of the optimization problem (13.7.1) exists in xI.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

13.8 SECOND NUMERICAL EXAMPLE

For a second example, we replace the inequality constraint p2(x) ≤ 0 in
problem (13.7.1) by an equality constraint using the same function. The
problem becomes

Minimize f (x) = x1

subject to p(x) = x2
1 + x2

2 − 1 ≤ 0,

q(x) = x2
1 − x2 = 0.

We use the linear normalization (13.2.2a) for the Lagrange multipliers.
The solution is

x∗
1 = −(x∗

2)1/2 � −0.786, x∗
2 = 51/2 − 1

2
� 0.618

and the Lagrange multipliers for the solution are

u∗
0 = 2x∗

1

2x∗
1 − 1

� 0.611,

u∗
1 = 1

(1 − 2x∗
1)[1 + 2x∗

2] � 0.174,

v∗
1 = 2x∗

2u∗
1 � 0.215.

Equation (13.5.1), which expresses (part of) the John conditions, be-
comes

φ(t) =









u0 + u1 + Ev1 − 1
u0 + 2u1x1 + 2v1x1

2u1x2 − v1

u1(x
2
1 + x2

2 − 1)

x2
1 − x2









= 0

where t = (x1, x2, u0, u1, v1)
T .

Let the box xI have components

X1 = [−0.8, −0.7], X2 = [0.6, 0.7].

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Approximate the Lagrange multipliers by u0 = u1 = v1 = 1/3. Linearizing
φ(t) as in (13.5.3), and solving by interval Gaussian elimination, we obtain
the interval vector

tI′ =









[−0.789, −0.783]
[0.611, 0.622]
[0.611, 0.627]
[0.142, 0.200]
[0.148, 0.226]









containing the vector t for any solution with x∗ ∈ xI. The first two compo-
nents of tI′ are improved bounds for the solution point x∗. The last three
components of tI′ are bounds for the Lagrange multipliers.

Since the last component of tI′ bounds v1, we now know that v1 > 0
(for any solution with x∗ ∈ xI). Hence, we can replace E by 1 in the
first component of φ(t) for any subsequent iterations using the new box
(because it is contained in xI).

In this example, we started with bounds X1 and X2 and approxima-
tions for the Lagrange multipliers. Using (13.5.1), we computed improved
bounds on x∗ while producing bounds on the Lagrange multipliers. Iterat-
ing the procedure can produce sharper bounds on all these quantities.

Next, we consider use of the method described in Section 13.6 for the
same problem using the same box xI. Now, we do not need the approxima-
tions for the Lagrange multipliers. For this problem, the coefficient matrix
A(xI) in equation (13.6.2) is square and (13.6.2) becomes




1 1 E

1 2X1 2X1

0 2X2 −1



w =



1
0
0



 .

Substituting X1 = [−0.8, −0.7] and X2 = [0.6, 0.7] into this equation
and solving by Gaussian elimination (without preconditioning), we obtain

U0 = [0.582, 0.618],
U1 = [0.159, 0.190],
V1 = [0.208, 0.245].

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We have computed bounds on the Lagrange multipliers for any solution
to the optimization problem for which x∗ ∈ xI. We cannot iterate this step
since the procedure does not provide improved bounds on x∗.

13.9 USING CONSISTENCY

Hull consistency and box consistency can be applied to the John conditions.
To do so, we need bounds on the Lagrange multipliers. We have discussed
how bounds can be computed.

However, we do not apply consistency methods to the John conditions.
In our optimization algorithms, we apply consistency methods to each con-
straint individually. See the algorithms in Sections 14.8 and 15.12. Little
is gained by also applying them to the equations expressing the John con-
ditions.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 14

INEQUALITY
CONSTRAINED
OPTIMIZATION

14.1 INTRODUCTION

In Chapter 13 we dealt primarily with the John conditions and the Lagrange
multipliers that are introduced to provide conditions for a solution. In Chap-
ters 14 and 15, we discuss procedures for solving constrained optimization
problems.

For pedagogical reasons, we consider inequality and equality con-
strained problems separately. In this chapter, we discuss the optimization
problem in which only inequality constraints are present. In the next chap-
ter, we discuss the problem in which only equality constraints occur.

By separating the cases, we hope to make clear which aspects of the
constrained problem are peculiar to the particular kind of constraints. There
is no difficulty in combining the algorithms for the two cases into a single
algorithm for problems in which both kinds of constraints occur. We do so
in Chapter 16.

Suppose that a given problem has inequality constraints but no equality
constraints. Then it might be possible to show that a given box is certainly
strictly feasible. If so, we know that any minimum in the box is a stationary

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

point of the objective function. See Section 14.5. Thus, we can search for
a minimum in of the box using the algorithm for unconstrained optimiza-
tion given in Chapter 12. This algorithm uses effective procedures that
are generally not valid for a constrained problem. This is one reason for
separately discussing equality and inequality constrained problems. These
procedures are not available for a problem having equality constraints be-
cause the feasible region has no interior in which a box might be certainly
feasible.

When there are inequality constraints only, the optimization problem
(13.1.1) becomes

Minimize f (x) (14.1.1)

subject to pi(x) ≤ 0 (i = 1, · · · , m) .

We assume that f is twice continuously differentiable and that
pi (i = 1, · · · , m) is continuously differentiable. For cases in which these
conditions do not hold, see Section 14.12.

The first interval algorithm for this problem was given by Hansen and
Sengupta (1980). Our present approach is similar; and we use some of the
procedures from that paper. However, the algorithm we give in Section
14.8 differs in various ways.

We seek the solution to (14.1.1) in an initial box xI(0)
. If any constraint

prescribed in the problem statement has the form xi ≥ ai or xi ≤ bi

(i = 1, · · · , m), we use it to determine the appropriate endpoint of the i-th

component of xI(0). We call such a constraint a prescribed box constraint.
If the prescribed box constraints do not fix all 2n sides of a box, the user

of our algorithm must choose the remaining sides. Alternatively, default
values can be used. An upper endpoint of a box component can be chosen
to be the largest positive number representable in the number system of the
computer. A lower endpoint can be the smallest such negative number. Any

sides of xI(0) that are not prescribed box constraints are called unprescribed
box constraints.

We assume the unprescribed box constraints are chosen so that xI(0)

contains the global solution. Otherwise, the global solution is not found.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

As we explain later in this section, if the global solution is outside xI(0), we

might not even find the best solution in xI(0).

Suppose xI(0) does not contain the global minimum but contains at least
one local minimum. Then our algorithm finds either the smallest of these

local minima or else a point in xI(0) where f is strictly smaller than the
smallest of these local minima.

To ensure that the best solution in xI(0) is found in all cases, the un-
prescribed constraints must be treated as if they are prescribed. We do not

do so in our algorithm. Instead, we rely on the user to specify xI(0) to be
sufficiently large to contain the global solution. Our philosophy is that if
we do not find the global solution, we might as well be satisfied with a

solution that can be slightly suboptimal in xI(0) as well.

A user who wants the solution that is global in xI(0) can simply specify

all sides of xI(0) as prescribed box constraints. However, this causes intro-
duction of an additional Lagrange multiplier in the John conditions for each
constraint that is changed from unprescribed to prescribed. Therefore, the
dimension of the problem is increased; and more computing is generally
required to obtain the solution. See Section 14.2 or 14.8.

We now explain why the solution produced by our algorithm might not

be the best one in xI(0) if the global solution is not in xI(0).
We introduced the John conditions in Section 13.2 and we specialize

them for the inequality constrained problem in Section 14.2. In our algo-

rithm, we delete subboxes of xI(0) that we prove cannot contain any point
satisfying the John conditions.

Suppose the global solution in xI(0) occurs on an unprescribed box
constraint. The John conditions are not satisfied at this point unless f (x) is
stationary there. Therefore, our algorithm is likely to delete the point. This
might occur when a Newton method is applied to solve the John conditions.
The point might also be deleted by the procedure described in Section 12.4
that deletes points where the gradient of the objective function is not zero.

Figure 14.1.1 is a simple illustration of the situation. In the figure there
is a prescribed inequality constraint −6 ≤ x, the upper bound of the starting
interval is 5, and this is an unprescribed constraint. Values of x less than

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

the sampled value can be deleted because f is greater than at the sampled
value. Values of x greater than the sampled value can be deleted because
none is a stationary point. The end result is that the entire starting box can
be deleted. The sampled value is accepted as the minimum. To obtain the
global minimum, either the constraint x ≤ 5 must be prescribed, or the
upper bound of the interval X must be increased to a point where the slope
of f is nonnegative.

][

-10 10

x

-10

10
f(x)

Prescribed Constraint: 6 ≤ x

Sampled Value of f

Minimum Value of f in X

Figure 14.1.1: Deleting All Boxes in a Constrained Problem

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In Section 12.5, we describe how to compute approximations for the

global solution by sampling values of f at points in xI(0)
. In Section 14.3,

we describe a similar sampling procedure for the inequality constrained

case. If the global solution in xI(0) is deleted as just described, the best
result from sampling is available as an approximate solution. This value
can be less than the value of the objective function at any stationary point

in xI(0), but it might not be the global minimum.

14.2 THE JOHN CONDITIONS

For the inequality constrained optimization problem, we normalize the La-
grange multipliers using the linear relation

u0 + · · · + um = 1. (14.2.1)

See Sections 13.2 and 13.3. Therefore, the function given by (13.5.1),
which expresses (part of) the John conditions, becomes

φ(t) =










u0 + · · · + um − 1
u0∇f (x) + u1∇p1(x) + · · · + um∇pm(x)

u1p1(x)
...

umpm(x)










. (14.2.2)

The remaining part of the John conditions not in (14.2.2) is that the
Lagrange multipliers are nonnegative. (See (13.2.1d).) Therefore, the
normalization equation (14.2.1) provides the bounds

0 ≤ ui ≤ 1 (i = 0, · · · , m). (14.2.3)

These bounds are useful when solving the John conditions using the form
of the interval Newton method in which the linearized equations are solved
by the Gauss-Seidel method.

Suppose we solve the linearized John conditions by Gaussian elimina-
tion or by the “hull method” of Section 5.8. Then we do not need bounds on

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

the Lagrange multipliers. However, we do need estimates. We can begin
by letting ui = 1/(m + 1) for all i = 0, · · · , m so that (14.2.1) is satisfied.
A successful step of a Newton method provides interval bounds on the La-
grange multipliers. For the next Newton step, the centers of these intervals
can serve as the needed estimates.

In our algorithm, we do not iterate the Newton procedure to conver-
gence. One reason for this is that we do not want to spend effort to get
good bounds on a local (nonglobal) solution of the optimization problem.
To prevent this, we use other procedures that we list in Section 14.8. An-
other reason is that other procedures for improving the bounds on a solution
require less computing effort, and thus take precedence.

14.3 AN UPPER BOUND ON THE MINIMUM

In Section 12.5, we discussed how to obtain and use an upper bound f on the
globally minimum value f ∗ of the objective function f . We do the same

thing for the constrained case. We can delete any point x where f (x) > f.

To compute f, we evaluate f at various certainly feasible points obtained

by the algorithm; and we set f equal to the smallest upper bound found in
this way.

When constraints are present, we must assure that each point used to

update f is feasible. We must assure this feasibility despite the fact that
rounding makes the correct value of a constraint function uncertain. We do
this by requiring that the point is certainly feasible as defined in Section
6.1.

Having computed an upper bound f, we use it to delete subboxes of

xI(0) in the same way described in Section 12.5. Points deleted in this way

can be feasible or infeasible. The inequality f (x) ≤ f can also be added to
the John conditions as if it were an ordinary constraint.

We try to reduce f at various stages of the algorithm. Whenever the

algorithm produces a new subbox of xI(0) (see Section 14.8), we check to
see if the center of the box is certainly feasible. If so, we evaluate f at this

point and update f.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In our algorithm for the unconstrained problem, when the new box is
generated, we use a real Newton method to search for a point in the new

box that enables us to reduce f. This is facilitated by having a real inverse
matrix to use in the Newton process. See Section 12.6.

In the constrained case, we do not have such an inverse. However, it
is possible to obtain one. A procedure in our algorithm solves the John
conditions in the linearized form (13.5.3). This procedure computes an
approximate inverse of the center Jc of the Jacobian J(t, tI) defined by
(13.5.2). See Section 5.6. For our search, we want to approximate the
inverse of the leading principal submatrix of J(t, tI) of order n. This can
be obtained when computing an approximate inverse of Jc. The matrix Jc

must be partitioned appropriately. We do not use such a procedure, so we
omit the details.

There is no guarantee that such a point generated by such an interval
method is feasible. Therefore, it does not seem fruitful to do all the work
required to apply a Newton method when the effort might be wasted. We

have not tried to do so. Moreover, we want to update f even when we are
not going to try to solve the John conditions, and thus have no reason to
compute a Jacobian. Therefore, we use a simpler procedure. We describe
it in the next section.

14.4 A LINE SEARCH

Suppose our algorithm has generated a subbox xI of the initial box xI(0)
.

(See Section 14.8 to see how this might be done.) Let x denote the center
of xI. Under appropriate conditions (to be given), we search along a half-
line beginning at x for an approximate solution point of the optimization
problem (14.1.1).

If we have already found a certainly feasible point in xI(0), we have a

finite upper bound f on the globally minimum value f ∗. (See Section 14.3.)

Otherwise, f = +∞. We perform the line search to try to reduce f only if

f (x) < f. This decision is made regardless of whether x is a certainly
feasible point or not.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Consider the half-line extending in the negative gradient direction from
x. If x is certainly feasible, we search on the segment of this half-line
between x and the point, say x′, where the half-line crosses the boundary
of xI. If the gradient is not zero at x, then f decreases (locally) in the
direction of x′ from x. If we can find a certainly feasible point, say y,

on this line segment where f (y) < f (x), then we can reduce f since we

assumed f (x) < f and hence f (y) < f.

If x is not certainly feasible, then it is possible that no point on the line
segment joining x and x′ is certainly feasible. To enhance the possibility
of finding a certainly feasible point in xI, we search in a direction in which
we know there exists at least one certainly feasible point. The point x at

which we computed the current value of f is such a point, and is the one
at which f has the smallest currently known feasible value. A user might
have provided a finite upper bound f without knowing a point x where
f (x) = f . If no point x is known and x is not certainly feasible, we do not
do a line search.

We search in this direction even though the value of f at x is larger than
at x. We can take the positive view that we are not searching from x toward
larger values of f , but we are searching from the point x toward the point
x where we know f is smaller. The search is restricted to the box xI even
though the point x need not be in xI.

Certain conditions must be met before we do the line search. Given a
box xI, we determine its center x and compute f I(x). Because of rounding,

we obtain an interval [f I(x), f I(x)]. If f I(x) < f, we do the line search.
Otherwise, we do not.

Also, if x in not certainly feasible and f = +∞, we do not do the search.

The condition f = +∞ indicates that no certainly feasible point has yet
been found. Therefore, we do not know a preferred direction in which to
search.

The point x need only be an approximation for the center of xI. There-
fore, it can be computed using rounded real arithmetic.

We now list the steps of such a line search. Unless otherwise specified
by branching, the steps are done in the order given. The initialization step
contains the tests to decide if the procedure is to be used or not.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In the procedure, y always denotes the certainly feasible point where f

takes the smallest value yet found. We do not use interval arithmetic in the
algorithm except in step 11 and when evaluating the constraints to decide
if a point is certainly feasible.

0. Initialize:

(a) If f (x) ≥ f terminate.

(b) If x is not certainly feasible and no certainly feasible point is
yet known, terminate.

(c) Set n = 0.

1. If x is certainly feasible, go to Step 3.

2. If a feasible point x is known where f (x) = f < +∞, set y = x and
y′ = x. If no such point x is known, go to Step 12. Note that x is the

point where f (x) = f.

3. Determine the positive constant c such that x′ = x − cg(x) is on the

boundary of xI where g is the gradient of f. That is, c = min
1≤i≤n

w(Xi)

2|gi(x)| .

4. Set y = x and y′ = x′. If f (x′) ≥ f (x), go to Step 6.

5. If x′ is certainly feasible, replace y by x′ and y′ by x.

6. Compute y′′ = 1
2 (y + y′). Replace n by n + 1.

7. If f (y′′) ≥ max{f (y), f (y′)}, go to Step 11.

8. If f (y′′) ≥ f (y), replace y′ by y′′ and go to Step 10.

9. If y′′ is certainly feasible, replace y′ by y and then replace y by y′′.

10. If n < 4, go to Step 6.

11. Evaluate f (y) in interval arithmetic getting [f I(y), f I(y)]. Replace

f by min{f, f I(y)}.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

12. Terminate.

Note that since the center x of xI is computed only approximately, it
might be necessary to adjust x′ in Step 3 so that x′ ∈ xI. Actually, all that is
necessary is that x′ be in the initial box in which the optimization algorithm
is solved.

To do this line search, the constraint functions are evaluated up to five
times. See Steps 5 and 9. If there are a large number of constraints, this
number can be reduced to save computation. This can be done by reducing
the bound on n in Step 10. If there are few constraints, more iterations can

be used to try to compute a better bound on f. The procedure can also be

modified so the number of iterations depends on progress in reducing f.

Note that a user might know an upper bound f < +∞ on the global
minimum, but might not know a point x where f takes this value. Also, a

procedure in Chapter 16 uses this search algorithm when f < +∞ but x is
not known. In this case, a search cannot be made in the direction of x. See
Step 2 of the algorithm.

14.5 CERTAINLY STRICT FEASIBILITY

Consider a certainly strictly feasible (as defined in Section 6.1) subbox xI

of the initial box xI(0). If a minimum of f occurs in xI, it must occur at
a stationary point of f . When solving the constrained problem in xI, we
can treat the problem as if it were unconstrained. Therefore, we are able to
use procedures from our algorithm for the unconstrained problem that are
otherwise not valid for the constrained case.

Our algorithm for inequality constrained problems is given in Section

14.8. Suppose it generates a subbox xI of the initial box xI(0)
. We eval-

uate pi(xI) for i = 1, · · · , m and obtain the interval [p
i
(xI), pi(x

I)]. If

pi(x
I) < 0 for some value of i, then the i-th constraint can be ignored

when considering the box xI because the constraint cannot be active. If
pi(x

I) < 0, for all i = 1, · · · , m, then xI is certainly strictly feasible. That
is, no constraint is active in xI.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In this case, we can apply two of the “eliminating procedures” of Chap-
ter 12. First, since the gradient g of f must be zero at any solution in xI,
we can use procedures designed to solve g = 0. These procedures include
hull consistency, box consistency, and the interval Newton method.

Second, we can use the convexity condition Hii(x) ≤ 0 (i = 1, · · · , n)
where Hii is the i-th diagonal element of the Hessian of f . This relation
can be “solved” using hull consistency, box consistency, and the method of
Section 6.2.

For any optimization problem (constrained or not), we can delete points

x where f (x) > f. This can be done using hull consistency or box consis-
tency. When xI is certainly strictly feasible, we can use the real Newton

method of Section 12.6 to try to reduce f. This procedure generally finds a

smaller value of f than the line search described in Section 14.4. However,
we use the real Newton method only when we intend to apply an interval
Newton method to solve g = 0. Otherwise, we avoid generating the real Ja-
cobian needed to apply the real Newton Steps. Instead, we use the simpler
line search procedure of Section 14.4.

Note that when we evaluate pi(xI) for some i = 1, · · · , m, and find that
pi(x

I) < 0, we identify a constraint (the i-th) that is without question not
active for any solution in xI. This is the converse of what is often done in
noninterval optimization procedures when the attempt is made to identify
active constraints. See, for example, Burke (1990).

14.6 USING THE CONSTRAINTS

Our optimization algorithm uses the inequality constraints to delete points
that are not feasible. One way is to apply hull consistency to each con-
straint separately. As noted previously, we can apply hull consistency to
an inequality pi(x) ≤ 0 by writing it as the equality pi(x) = [−∞, 0]. We
can also apply box consistency to the latter form.

We also use linearized forms of the constraints that enables us to apply
them as a system rather than one at a time. This provides a better procedure
for eliminating parts of boxes that are sufficiently small that linearization
provides a good approximation to the constraint functions. This resembles

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

application of an interval Newton method to solve a system of nonlinear
equations. We discuss linearization in the remainder of this section.

Assume that we want to linearize the constraints over xI and “solve”
them by the method of Chapter 6. Before doing so, suppose we evaluate
pi(xI) and obtain [p

i
(xI), pi(x

I)] for i = 1, · · · , m. If p
i
(xI) > 0 for any i,

then xI is certainly infeasible and can be deleted. Therefore, we can safely
assume that p

i
(xI) ≤ 0. At the other extreme, suppose pi(x

I) ≤ 0. In this

case, the constraint cannot serve to delete any points of xI; and we omit it
from current considerations. Therefore, we assume p

i
(xI) ≤ 0 < pi(x

I).

In Section 6.4, we defined

si = pi(x
I)/[pi(x

I) − p
i
(xI)] (i = 1, · · · , m) . (14.6.1)

From the above discussion, we see that the i-th constraint is not violated in
xI if si ≤ 0, and there is no feasible point in xI if si > 1. For small values of
si the i-th constraint is only “slightly violated” by points in xI and is likely
to delete only a small part of xI. Therefore, to reduce effort, we use the i-th
constraint only if

si > 0.25 (14.6.2)

We linearize the constraints for which (14.6.2) is satisfied as described
in Section 6.3. We then “solve” the set of linear constraints over xI as
described in Chapter 6. This process generally deletes all or part of xI.

There is an additional constraint that can possibly be used. If f < +∞,

we can also include the inequality f (x) − f ≤ 0. This inequality must hold
for any point x that is a candidate for a global solution point. We include
this inequality in the set to be linearized and solved as if it is just another
constraint whenever

f (xI) − f

f (xI) − f (xI)
> 0.25. (14.6.3)

When we linearize the constraints over a box xI as described in Section
6.3, the resulting coefficient matrix is an interval matrix. Assume that xI

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

contains a local (or global) solution of the minimization problem (14.1.1).

Assume, also that the inequality f (x) − f ≤ 0 has been introduced as an
explicit constraint. Then the coefficient matrix contains a real (noninterval)
matrix whose rows are linearly dependent.

The existence of such a singular real matrix is assured by the John
conditions. They specify (in part) that some linear combination of the
gradients of the active constraints at a solution is opposite in direction to
the gradient of the objective function. This linear dependence causes no
difficulty with our algorithm.

Earlier in this section we stated that we evaluate pi(xI) (i = 1, · · · , m)

to determine which constraints to linearize according to the criterion (14.6.2).
Rather than simply evaluating pi(xI), we actually do something somewhat
different.

Assume we have applied hull consistency to the system of constraints.
When doing so, we solve each constraint for each variable. Assume that
the last time we used the i-th constraint, we solved it for xj for some j =
1, · · · , m. To do so, we write pi(x) ≤ 0 as a(x)g(xj) − h(x) = [−∞, 0]
and compute

X′
j = g−1{(h(xI) + [−∞, 0])/a(xI)}

In so doing, we obtain a(xI) and h(xI). Denote X′′
j = Xj ∩X′

j . The function

g is chosen to be simple. Therefore, we can easily evaluate g(X′′
j). One

extra subtraction and one extra multiplication yields a(xI)g(X′′
j) − h(xI).

This is an adequate approximation to pi(xI) for the purpose of determining
si as defined in (14.6.1). Therefore, we save the work of evaluating pi(xI)

(i = 1, · · · , m).
Suppose that hull consistency is applied to another constraint after it

was last applied to the i-th. If so, the box can change and the computed
value for pi(xI) is not for the final box. However, when we cycle through the
constraints and through the variables when applying hull consistency, most
of the change in the box occurs in the early stages. Therefore, we expect the
value of pi(xI) (computed as described) to be a reasonable approximation
for the value pi over the final box.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Note that if pi(xI) < 0, hull consistency obtains xI′′ = xI. Therefore,
when we evaluate a(xI)g(X′′

j) − h(xI), we obtain pi(xI) and learn that

pi(xI) < 0. This can be useful information. For example, see Step 11 of
the algorithm in Section 14.8.

In Section 11.9, we analytically precondition a system of nonlinear
equations. This is done to make the i-th preconditioned equation strongly
dependent on the i-th variable. We then solve the i-th preconditioned equa-
tion for the i-th variable using both hull consistency and box consistency.
We (sometimes) apply a similar process when solving systems of nonlinear
inequalities. We now describe this process.

Assume we have linearized the system of constraints and obtained a
linear system AIx ≤ bI. Let AI be composed of m rows and n columns. We
described in Section 6.3 how we can generate a preconditioning matrix BI

by operating on the center Ac of AI. The elements of B must be nonneg-
ative to avoid reversing the sense of any inequality. We can analytically
precondition the system p(x) ≤ 0 by multiplying by B and then solve the
system Bp(x) ≤ 0 using consistency methods.

To determine B, we use Gaussian elimination to zero elements of Ac

in positions (i, j) with i �= j for i = 1, · · · , m and j = 1, · · · , r ′. The
number r ′ cannot generally exceed m and might be less than m−1 because
the elements of B must be nonnegative. If r ′ < n/2, we assume that Bp(x)

is not sufficiently different from p(x) and we therefore do not generate
Bp(x) and do not apply the consistency methods.

Assume r ′ ≥ n/2. Then we apply the consistency methods to solve the
i-th inequality of Bp(x) ≤ 0 for xi for i = 1, · · · , r ′. When determining
B, we also generate r ′ inequalities corresponding to the “secondary pivot
rows” (see Section 6.5). We also solve the i-th of these inequalities from
Bp(x) ≤ 0 for the i-th variable.

A user might want to assure that all the efforts to delete points which
do not satisfy the constraints are sufficiently successful. To assure this,
we assume that the user specifies a tolerance εp. The algorithm assures
that pi(x) ≤ εp (i = 1, · · · , m) for all x in every box remaining after
the minimization algorithm terminates. If there is no desire to assure this
condition, the tolerance εp can be set to ∞.

The procedure to linearize and solve the system of inequality constraints

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

involves a substantial amount of work. We now discuss whether it is worth
doing. Assume the constraints are functions of n variables; and we linearize
the vector p(x) ≤ 0 of m constraints over a box about a point x0 in the box.
We obtain a linear system of the form

p(x0) + J(y − x0) ≤ 0

where the matrix J is m by n. We discussed the possible choices of real
versus interval arguments of J in Section 7.3. We discussed how to solve
such a linear system of inequalities with interval coefficients in Chapter 6.

In practice, each constraint usually depends on only a few of the n

variables. Therefore, J is sparse. If we perform elimination on the linear
system, we can only eliminate m variables. In the process we expect “fill-
in” to make the final matrix dense. If so, each equation of the final system
involves all n − m of the remaining variables. To “solve” them, we can
apply hull consistency.

For the sake of argument, assume each constraint is a function of s

variables (although different constraints are functions of a different set of
s variables). If n − m > s, we are less likely to obtain information from a
transformed linear inequality of n−m variables than from an original non-
linear constraint of s variables. Therefore, there is little point in linearizing
and solving the original nonlinear system when n − m ≥ s.

Let us redefine s to be the average number of variables upon which
a given inequality constraint depends. To use the procedure, we must
linearize the system of constraints, compute and apply the preconditioning
matrix, do the elimination in the interval system, and solve the transformed
system. See Chapter 6. This is a substantial amount of work. Moreover, we
might not be able to complete the last phase of elimination in the interval
system because, at some stage, there might not be a positive multiplier to
do an elimination step. Therefore, we might end up with more than n − m

variables in each inequality after elimination.

Because of the work to apply the procedure, we do not use it unless
n − m is substantially less than s. We have arbitrarily chosen a condition.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We use the procedure only if

n − m ≤ s/2. (14.6.4)

14.7 USING TAYLOR EXPANSIONS

To apply a step of a Newton method requires quite a lot of computing.
When solving the John conditions, the interval Jacobian of φ(t) (as given
by (14.2.2)) can contain a singular real matrix (i.e., be irregular). If so, the
Newton step (using the Gauss-Seidel method) tends to make little progress.
We want to apply such a Newton step only when the Jacobian is regular.
In Section 11.11, we described a linearization test (11.11.1) for deciding
whether or not to apply a Newton step in an unconstrained problem. A
Newton step is bypassed if the criterion indicates that the step is likely to
be unsuccessful.

We now repeat our discussion of criterion (11.11.1) and then discuss
similar criteria for deciding whether to apply other procedures that involve
linearization.

Assume that the Newton method has previously been applied to the
equation g(x) = 0 where g(x) is the gradient of the objective function.
Let w

g
I denote the width of the smallest box for which the preconditioned

Jacobian (computed in the Newton method) has been found to be irregular.
Let w

g
R denote the width of the largest box for which the preconditioned

Jacobian was found to be regular. (We have introduced a superscript g
to indicate that the Newton method was applied to the gradient of the
objective function.) We apply the Newton method to a given box xI if
w(xI) ≤ (w

g
I + w

g
R)/2.

For the constrained case, we use the same criterion for deciding whether
to apply the Newton method to the John conditions. That is, we use the
size of boxes for which the preconditioned Jacobian of the John conditions

is regular or irregular. Now we use corresponding parameters wJ
I and wJ

R

defined in the same way as w
g
I and w

g
R, respectively. Thus, we apply the

Newton method to the John conditions only if

w(xI) ≤ (wJ
I + wJ

R)/2. (14.7.1)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We want to use a similar criterion to decide whether to “solve” the
system of constraint inequalities by linearizing them as in Chapter 6.Now,
however, we do not have a square coefficient matrix to test for regularity.

We solve the constraints over a given box only if we expect to make
progress in reducing the box. A linearized version of a constraint function
over a given box is generally a good approximation for the function only if
the box is “small”. Therefore linearizing and solving the constraints tends
to be useful only if the box is “small”. Instead of using regularity of a matrix
as a criterion for linearizing, we linearize the constraints over a given box
only if progress was previously made when doing so for a box of similar
size.

Suppose we solve the constraints over a box xI. In so doing, the box
might or might not be sufficiently reduced as defined using (11.7.4). Let wp

S

denote the largest width of any sufficiently-reduced box. Let wp

I denote the
smallest width of any box that was not sufficiently reduced. In Chapter 11,
we described how we linearize a system of nonlinear constraints and use
Gaussian elimination to solve the derived linear system. (See also Section
14.5.) We use this method to solve the inequality constraints only if the
width of the current box is ≤ (w

p

S + w
p

I)/2.

Initially, we set w
p

S = 0 and w
p

I = w(xI(0)
) where xI(0) is the initial box

in which the optimization problem is solved. After applying the procedure,
we replace w

p

S by max
(
w

p

S , w(xI)
)

if xI was sufficiently reduced (as de-
fined using (11.7.4) by the procedure. If the procedure has not sufficiently
reduced xI, we replace w

p

I by min
(
w

p

I , w(xI)
)
.

We can solve the inequality f (x) ≤ f by linearizing and using the
method of Section 6.2. We sometimes do so by including this inequality in
the set of constraint inequalities as described in Section 14.6. However, we
sometimes solve this inequality by itself using linearization. In this case,
we decide whether to do so in the same way just described for the system

of constraints. Now, however, we use separate width parameters w
f

S and

w
f

I to make our decision regarding the inequality f (x) ≤ f.

The tests we have described in this section all serve to decide whether to
linearize particular nonlinear functions. Thus, we call them “linearization
tests”. Note that there are four of them. They concern linearization of the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

gradient of the objective function, of the John conditions, of the inequality

constraints, and of the inequality f (x) ≤ f.

We use another similar test to decide whether to expand the relation

f (x) ≤ f through second order (quadratic) terms. For this test, we use

parameters wS
S and wS

I corresponding to w
f

S and w
f

I , respectively.

14.8 THE ALGORITHM STEPS

In this section, we list the steps of our algorithm for computing the global
solution to the inequality constrained problem (14.1.1).

Generally, we seek a solution in a single box specified by the user.
However, any number of boxes can by specified. The boxes can be disjoint
or overlap. However, if they overlap, a minimum at a point that is common
to more than one box is separately found as a solution in each box containing
it. In this case, computing effort is wasted. If the user does not specify an
initial box or boxes, we use a default box as described in Section 12.3. The
algorithm finds the global minimum in the set of points formed by the set
of boxes. We assume these initial boxes are placed in a list L1 of boxes to
be processed.

Suppose the user of our algorithm knows a point x that is guaranteed to

be feasible. If so, we use this point to compute an initial upper bound f on
the global minimum f ∗. If x cannot be represented exactly on the computer,
we input a representable interval vector xI containing x. We evaluate f (xI)

and obtain [f (xI), f (xI)]. Even if rounding and/or dependence are such

that xI cannot be numerically proven to be certainly feasible, we rely upon
the user and assume that xI contains a feasible point. Therefore, we set

f = f (xI).

Also the user might know an upper bound f on f ∗ even though he might

not know where (or even if) f takes on such a value. If so, we set f equal to
this known bound. If the known bound is not representable on the computer,
we round the value up to a larger value that is representable.

If no feasible point is known and no upper bound on f ∗ is known, we

set f = +∞.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

To initialize our algorithm, we require that the user specify a box size
tolerance εX, a function width tolerance εf , a tolerance εp bounding values
of the inequality constraints (see Section 14.6), and the initial box(es). The
initial box(es) are placed in the list L1.

The algorithm initializes the parameters needed to perform the lin-
earization tests and the parameters to decide whether to expand the relation

f (x) ≤ f through second order terms. (See Section 14.7.) It sets w
g
R, wJ

R,

w
p

S , wf

S , and wS
S to zero and sets w

g
I , wJ

I , wp

I , wf

I , and wS
I equal to w(xI(0)

).

It also sets wH = 0 where wH is the width of the largest box xI generated by
the algorithm such that Hii(xI) ≥ 0 for all i = 1, · · · , n. See Section 12.7.
It also sets a flag F equal to 0. (The significance of the flag is discussed in
Section 14.10.) In the algorithm, the current box is always denoted by xI

even though it changes from step to step.
The steps of the algorithm are to be performed in the order given except

as indicated by branching.

1. For each box in the list L1, apply hull consistency to each of the
inequality constraints as described in Section 10.5.

2. If f < +∞, then for each box in L1, apply hull consistency to the

inequality f ≤ f.

3. If L1 is empty, go to Step 45. Otherwise, select (for the next box xI

to be processed by the algorithm) the box in L1 for which f (xI) is

smallest. For later reference, denote this box by xI(1). Delete xI from
L1.

4. If xI is certainly feasible, go to 13

5. Skip this step if xI has not changed since Step 1. Apply hull consis-
tency over xI to each constraint inequality. If xI is deleted, go to Step
3.

6. Compute an approximation x for the center m(xI) of xI and an ap-

proximation f (x) for the value of f at x. If f (x) > f, go to Step
8.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

7. Do the constrained line search described in Section 14.4 to try to

reduce f. If f is not reduced, go to Step 10.

8. Apply hull consistency to the inequality f (x) ≤ f. If xI is deleted,
go to Step 3.

9. If flag F = 0, go to Step 9a. If flag F = 1, go to Step 9b.

(a) If w(xI) ≤ εX, and w[f (xI)] ≤ εf , put xI in list L2 and go to
Step 10. Otherwise, go to Step 9c

(b) If pi(xI) ≤ εp for all i = 1, · · · , m, put xI in list L2 and go to
Step 10. Otherwise, go to Step 9c.

(c) If xI is sufficiently reduced (as defined using (11.7.4)) relative

to the box xI(1) defined in Step 3, put xI in list L1 and go to Step
3.

10. Apply box consistency (as described in Section 10.2) to each con-

straint inequality. If f < +∞, also apply box consistency to the

inequality f (x) ≤ f. If xI is deleted, go to Step 3.

11. If pi(x
I) ≥ 0 for any i = 1, · · · , m (i.e., if xI is not certainly strictly

feasible), go to Step 28.

12. Apply hull consistency to gi = 0 for i = 1, · · · , n where g is the
gradient of the objective function f . See Section 12.4. If the result
for any i = 1, · · · , n is empty, go to Step 3.

13. Evaluate f at the center of xI. That is F
(
m
(
xI
))

. Use the result to

update f.

14. If f < +∞, apply hull consistency to the relation f (x) ≤ f. If the
result is empty, go to Step 3.

15. If w(xI) ≤ wH , go to Step 20. Otherwise, apply hull consistency to
the relation Hii(x) ≥ 0 for i = 1, · · · , n where Hii is an element of
the Hessian of f . See Section 12.7. If the result is empty, go to Step
3.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

16. Repeat Step 9.

17. Apply box consistency to gi = 0 for i = 1, · · · , n. If the result is
empty, go to Step 3.

18. Apply box consistency to Hii(x) ≥ 0 for i = 1, · · · , n. If the result
is empty, go to Step 3.

19. Repeat Step 9.

20. If w(xI) > (w
g
I + w

g
R)/2 (see Section 14.7), go to Step 28.

21. Generate the interval Jacobian J(x, xI) of the gradient g and compute
the approximate inverse B of the center of J(x, xI). See Section 5.6.
Compute M

(
x, xI

) = BJ
(
x, xI

)
and rI (x) = −BfI (x) .Update w

g
I

and w
g
R. (See Section 14.7.) Apply one step of an interval Newton

method to solve g = 0. If the result is empty, go to Step 3.

22. Repeat Step 9.

23. The user might wish to bypass use of analytic preconditioning (see
Section 11.9). If so, go to Step 27. To apply analytic preconditioning,
use the matrix B found in Step 21 to obtain Bg in analytic form.
Apply hull consistency to solve the i-th equation of Bg = 0 for the
i-th variable xi for i = 1, · · · , n. If the result is empty, go to Step 3.

24. Repeat Step 9.

25. Use box consistency to solve the i-th equation of Bg (as obtained in
Step 23). for the i-th variable for i = 1, · · · , n. If the result is empty,
go to Step 3.

26. Repeat Step 9.

27. Use the matrix B found in Step 21 in the search method of Section

12.6 to try to reduce the upper bound f.

28. Compute an approximation x for the center m(xI) of xI and an ap-

proximate value of f (x). If f (x) > f, go to Step 30.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

29. Skip this step and go to Step 36 if xI is the same box for which a line
search was done in Step 7. Otherwise, do the line search described

in Section 14.4 to try to reduce f. If f is not reduced, go to Step 36.

30. If w(xI) > (w
f

I + w
f

S)/2 (see Section 14.7), go to Step 36.

31. Use the linear method of Section 12.5.3 to try to reduce xI using

the inequality f (x) ≤ f. Update w
f

I and w
f

S . If xI is deleted, go to
Step 3. Otherwise, if this application of the linear method does not
sufficiently reduce (as defined using (11.7.4)) the box considered in
Step 30, go to Step 35.

32. Repeat Step 9.

33. If w(xI) > (wS
I + wS

S)/2 (see Section 14.7.) go to Step 36.

34. Use the quadratic method of Section 12.5.4, to try to reduce xI using

the inequality f (x) ≤ f. Update wS
I and wS

S (see Section 14.7.) If xI

is deleted, go to Step 3.

35. Repeat Step 9.

36. If w(xI) > (w
p

I + w
p

S)/2 (see Section 14.7), go to Step 43.

37. If inequality (14.6.4) is not satisfied, go to Step 43. Otherwise, using
the selection process of Section 14.6, choose the constraints to be
solved in linearized form by the method in Chapter 6. Add to this set

the inequality f (x) ≤ f if (14.6.3) is satisfied. If no inequalities pass
the selection tests, go to Step 43. Otherwise, linearize the resulting
set of inequalities using the expansion given in Section 7.3. (See
also Section 6.2). Solve the resulting set of linear inequalities by the
method of Chapter 6. Update w

p

I and w
p

S . If the solution set is empty,
go to Step 3.

38. Repeat Step 9.

39. In Step 37, the procedure of Chapter 6 generates a preconditioning
matrix B. Also, in Step 37, the procedure in Section 14.6 determines

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

an integer r ′. If r ′ ≥ n/2, use B to analytically precondition the
set of inequalities that were selected for use in Step 37. Use hull
consistency to solve each of the 2r ′ inequalities described in Section
14.6. In so doing, each inequality is solved for the same (single)
variable for which the linearized inequality was solved in Step 37.

40. Repeat Step 9.

41. Use box consistency to solve the same inequalities for the same vari-
ables as in Step 39.

42. Repeat Step 9.

43. If w(xI) > (wJ
I + wJ

R)/2 go to Step 46.

44. Modify the John conditions by omitting those constraints pi for which
pi(xI) < 0 (since they are not active in xI). Apply one pass of
the interval Newton method of Section 11.14 to the (modified) John
conditions. Update wJ

I and wJ
R. If the result is empty, go to Step 3.

45. Repeat Step 9.

46. In various previous steps, gaps might have been generated in com-
ponents of xI. If so, merge any of these gaps that overlap. Use the
procedure described in Section 11.8 to split xI. Note that the vector
of functions use in defining the Jacobian in Section 11.8 is now the
gradient. Note also that when the Newton method has been used, the
Jacobian elements needed in (11.8.1), will have been determined in
Step 21 or Step 44.

Put the generated subboxes in L1 and go to Step 3.

47. If flag F = 1, go to Step 51. Otherwise, set F = 1.

48. For each box xI in list L2, do the following: If pi(xI) � εp for any
i = 1, · · · , m, put xI in list L1.

49. If any box was put in list L1 in Step 48, go to Step 3.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

50. If f < +∞, apply hull consistency to f (x) ≤ f for each box in the list

L2. Denote those that remain by xI(1),...,xI(s) where s is the number
of boxes remaining. Determine

F = min
1≤i≤s

f (xI(i)) and F = max
1≤i≤s

f (xI(i)).

51. Terminate.

14.9 RESULTS FROM THE ALGORITHM

After termination, w(xI) < εX and w[f (xI)] < εf for each remaining box

xI. Also, F ≤ f (x) ≤ F for every point x in all remaining boxes. If,

after termination, f < +∞, we know there is a feasible point in the initial
box(es). Therefore, we know that

F ≤ f ∗ ≤ min{f, F }.

If, after termination, f = +∞, then we have not found a certainly

feasible point. There might or might not be one in xI(0). However, we

know that if a feasible point does exist in xI(0), then

F ≤ f ∗ ≤ F .

Suppose a feasible point exists. If our algorithm fails to find a certainly

feasible point, then it does not produce an upper bound f and cannot use the

relation f ≤ f. In particular, it cannot delete local minima where f (x) >

f ∗. In this case, all local minima are contained in the output boxes.

If all of the initial box xI(0) is deleted by our algorithm, then we have

proved that every point in xI(0) is infeasible. Suppose that every point in

xI(0) is infeasible. Our algorithm might prove this to be the case. However,

we delete a subbox of xI(0) only if it is certainly infeasible. Rounding errors
and/or dependence can prevent us from proving certain infeasibility of an

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

infeasible subbox. Increased wordlength can reduce rounding errors and
decreasing εX can reduce the effect of dependence by causing subboxes to
eventually become smaller. However, neither effect can be removed.

Suppose f = +∞ after termination and xI(0) has not been entirely

eliminated. It might still be possible either to compute f < +∞ or to delete

all of xI(0) by reducing the values of εX and εf and continuing to apply the
algorithm. To try to do so, we need only to reduce these tolerances and
move the boxes from list L2 to list L1. We can then restart the algorithm
from the beginning with or without use of increased precision.

A user might want a single feasible point x̃ such that

||̃x − x∗|| ≤ ε1 (14.9.1)

and/or

f (̃x) − f ∗ ≤ ε2 (14.9.2)

for some ε1 and ε2. Recall that x∗ is a (feasible) point such that f (x∗) = f ∗
is the globally minimum value of the objective function f . Our algorithm
might or might not fully provide such a point. We distinguish four cases.

Case 1. There is only one final box xI and x ∈ xI and f < +∞. (Recall

that x is the feasible point where the smallest upper bound f = f (x)

on f ∗ was determined by the algorithm.)

Since x∗ is never deleted by the algorithm, it must be in the single
remaining box xI. We can choose x̃ = x. Then the stopping criteria (see
Step 9 of the algorithm) assure that

||̃x − x∗|| ≤ εX and

f (̃x) − f ∗ ≤ εf .

Case 2. There is only one final box xI and x /∈ xI and f < +∞.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In this case, we know that a feasible point (i.e., x) exists in the initial

box because f < +∞. Therefore, the final box xI contains a feasible point
because f ∗ has not been deleted. If we can find a certainly feasible point in
xI, it will serve as the desired point x̃. We might be able to find such a point
by using some search procedure. If so, we have case 1. However, it might
not be possible to find a feasible point in xI. For example, the part of the
feasible region remaining in the final box when the procedure terminates
might be a single feasible point that cannot be certainly feasible.

An alternative is to accept a point x̃ as feasible if

pi(̃x) ≤ εp for all i = 1, · · · , m (14.9.3)

for some εp > 0. We do not (and should not) use (14.9.3) to delete points
in the optimization algorithm. However, we can add a convergence con-
dition of this kind to the algorithm without altering the correctness of the
algorithm. The condition can be useful for the present purpose of finding a
suitable point x̃ near x∗. The convergence condition that we can use is

pi(xI) ≤ εp for all i = 1, · · · , m. (14.9.4)

We add this condition to the convergence conditions w(xI) < εX and
w[f (xI)] < εf in Step 9 of the algorithm in Section 14.8. When de-
termining x̃, we assume that a final box is “feasible” if it satisfies (14.9.4).
However, if we can determine a suitable point x̃ that is certainly feasible,
we do so.

Note that rather than simply testing whether (14.9.4) is true, we should
apply hull consistency to the inequalities as discussed in Section 10.10.
This might reduce the box being tested whenever Step 9 is used.

Case 3. There is more than one final box and f < +∞.

In this case, x∗ can be anywhere in any final box If x is in a final box,
we can let x̃ = x. Then f (̃x) − f ∗ ≤ 2εf . If x is not in a final box, we can
assure (14.9.4) holds and use the argument in Case 2.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Case 4. f = +∞.

In this case, we do not know if there is any feasible point in the initial
box in which the algorithm began its search. However, if we assure that
(14.9.4) is satisfied and accept a point as feasible when it is satisfied, then
any point in any final box is “feasible” and the condition f (̃x) − f ∗ ≤ εf

is satisfied for any point x̃ in any final box.

14.10 DISCUSSION OF THE ALGORITHM

It is possible that, for a given problem, the feasible region does not have
an interior. In this case, the algorithm will probably not find a certainly
feasible point. As a result, the algorithm will not be able to delete local
minima. In this case, we can proceed as follows.

Let xI be a final “solution” box produced by the algorithm. Evaluate the
constraints over xI. We will not find that pi(xI) > 0 for any i = 1, · · · , m

because otherwise, the box would have been deleted by the algorithm. If
pi(xI) < 0 (i = 1, · · · , m) the i-th constraint is disregarded in what follows
(while we are considering the box xI). The remaining constraints probably
pass through xI and the stopping criteria assure that xI is small. Therefore,
there is a reasonable chance that the remaining constraints have a common
point in xI.

We now try to prove that there is a point in xI satisfying the remaining
constraints written as equalities. A procedure for doing so is given in Sec-
tions 15.4 through 15.6. If this procedure is successful, it proves existence
of a solution in a box xI′ contained in xI. Now f (xI′) is an upper bound
on the global minimum. If we do this process for each of the boxes that
remains after the optimization algorithm terminates, we are likely to obtain
an upper bound on the global minimum in at least one of the final boxes.

The stopping criteria in Step 9 require that a box xI satisfy w(xI) ≤ εX,
w
(
f (xI)

) ≤ εf , and pi(xI) ≤ εp (i = 1, · · · , m). It would be possible
to check that all three condition are satisfied each time Step 9 is used.
However, if there are several (or many) inequality constraints, the first two
conditions require less work to check than the third. A box that satisfies
the first two conditions might eventually be deleted using a procedure such

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

as that in Section 14.3. Therefore we do not use the third criterion until
near the end of the algorithm. The flag F enables us to postpone use of
the criterion. Note that when F = 1, the first two conditions are satisfied
so it is not necessary to check them in Step 9. Note that Steps 12 through
27 are essentially the same as corresponding steps in the algorithm for
unconstrained optimization in Section 12.14. This is because these steps
are applied to a box that is certainly feasible.

In our algorithm, we avoid using more complicated procedures until the
simpler ones no longer make sufficient progress in reducing the current box.
For example, we delay use of the John conditions until all other procedures
have been used.

We avoid using procedures that use Taylor expansions until we have
evidence that expanded forms provide sufficiently accurate approximations
to functions. See steps 20, 30, 33, 36, and 43.

Inequality constraints are often simple relations of the form xi ≤ bi or

xi ≥ ai. Such constraints serve to determine the initial box xI(0). There-
fore, they are satisfied throughout xI(0). Such constraints are omitted when
applying any procedure designed to eliminate infeasible points. See Steps
1, 5, 10, and 37.

In Step 7, we use a line search to try to reduce f. This involves evaluating
the gradient of f . We can avoid this evaluation by simply checking if the
midpoint x of the box is feasible and, if so, using f (x) as a candidate value

for f. However, it helps to have a finite value of f early, so the line search

is worth doing when f = +∞. Step 29 also uses a line search. It is less

important here because a finite value of f is likely to be computed in Step
7. If there are a large number of constraints, then evaluating the gradient is
not a dominant part of the work to do the line search.

Experience has shown that efficiency is enhanced if the subbox xI to
be processed is chosen to be the one for which f (xI) is smallest among all

candidate subboxes. This tends to cause a smaller value of f to be computed
sooner. Therefore, we return to Step 3 to choose a new subbox whenever
the current box has changed substantially.

Suppose we find that pi(xI) ≤ 0 for some value of i and some box xI.

Then pi(xI′) ≤ 0 for any xI′ ⊂ xI. Therefore, we can record the fact that

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

pi(xI) ≤ 0 so that we need not evaluate pi(xI′).
It is possible that the procedures in Step 21, 23, 25 or 44 prove the

existence of a solution to the optimization problem. If so, the user can be
informed of this fact. Such a solution can be local or global.

The splitting procedure called in Step 46 uses a measure of change in
the gradient of the objective function to determine how to split a box. If
the global minimum of f does not occur at a stationary point of f , the
change in the gradient is not directly significant. Nevertheless, it is a useful
measure in splitting.

14.11 PEELING

The inequality constrained problem can be solved in a different way. We
can use peeling. To do so, we first solve an equality constrained problem.
Then we solve an inequality constrained problem in which the solution
must occur at a stationary point of the objective function. In this second
problem, the gradient of f must be zero at a solution and the Hessian must
be positive semidefinite. This allows us to use Steps 12 through 27 of the
algorithm for any box regardless of whether it is feasible or not. In effect,
we solve the problem as if it is unconstrained; but we use the inequality
constraints to delete certainly infeasible points.

The term peeling was introduced in Kearfott (1992) and the procedure is
discussed in Kearfott (1996). It is the same as a method outlined by Moore
(1966). The purpose is to simplify problems in which the constraints are
simple bound constraints of the form xi ≥ ai and xi ≤ bi (i = 1, · · · , n).
An optimization problem is solved on each face of the box formed by these
constraints with the edges remove. Other problems are solved on each
edge with the corners removed and for each corner of the box. Finally,
an unconstrained problem is solved to find any solution in the interior of
the box. Thus 3n simple problems in reduced dimensions are solved. The
smallest solution to all these problems is the desired solution to the original
problem.

This approach is efficient only for problems of very small dimension.
We now describe an alternative procedure that requires solving only two

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

optimization problems. Also, we remove the condition used by Moore and
Kearfott that the constraints pi(x) ≤ 0 be simple bounds.

In the first of our two optimization problems, the solution occurs in the
interior of the feasible region. In this case, the solution occurs at a stationary
point of the objective function. This fact permits application of powerful
procedures that are not generally applicable for a constrained problem.
The solution to the second of the two optimization problems occurs on the
boundary of the feasible region. This fact enables the algorithm to delete
subboxes in the interior of the feasible region and quickly narrow the region
of search.

The solution to the original problem (14.1.1), is the smaller of the
solutions of the two problems that we introduce. Note that the feasible
region might not have an interior. In this case, the first problem has no
solution.

To find a problem whose solution is in the interior of the feasible region,
we can simply replace the inequality constraints in problem (14.1.1) by strict
inequalities. However, there is no need to do so because it does not matter
if a solution of the first problem occurs on the boundary of the feasible
region rather than in the interior.

The point is that the solution now occurs at a stationary point of f (x).
Therefore, the gradient g(x) of f (x) must be zero and the Hessian H(x)

must be positive semidefinite. These facts provide powerful procedures for
computing the desired minimum of f (x). See Sections 12.4 and 12.7. Also,
see Steps 12 through 25 of the algorithm in Section 14.8. Note that these
conditions on g(x) and H(x) replace the more complicated John conditions.

We can express the first optimization problem as

minimize f (x) (14.11.1)

subject to: the solution point x∗ is a stationary point of f (x) and

pi(x) ≤ 0 (i = 1, · · · , m) .

However, there is no need to express the stationarity condition as a con-
straint; but it is convenient to do so.

We now derive the second new optimization problem. In an inequality
constrained optimization problem, constraints pi (x) are imposed. These

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

are called prescribed constraints. If they do not fully define the initial box

xI(0), we implicitly add enough simple bound constraints to define xI(0)
.

Define the function

q(x) =
m∏

i=1

pi(x).

where only prescribed constraints pi are included in q. Consider the opti-
mization problem

minimize f (x) (14.11.2)

subject to q(x) = 0.

The solution to this problem must occur where at least one of the constraint
functions is equal to zero. If the constraints are all simple bound constraints,
this solution occurs on the boundary of the feasible region (which in this
case is the initial box). The problem can be solved by the algorithm given
in Section 15.12.

Suppose that at least one prescribed constraint is not a simple bound
constraint. Then a minimum on one constraint might not satisfy another
constraint. Therefore, we formulate the problem as

minimize f (x) (14.11.3)

subject to pi(x) ≤ 0 (i = 1, · · · , m) ,

q(x) = 0.

Let S denote the region satisfying all the prescribed inequality con-
straints pi(x) ≤ 0. This is the feasible region of the original problem
(14.1.1). Adding the constraint q(x) = 0 prevents the solution of (14.11.3)
from occurring in the interior of S. Therefore, the region of search is
reduced more quickly for (14.11.3) than for (14.1.1).

The global minimum is the smaller of the solutions of (14.11.1) and
(14.11.3). We can solve for either of these values first. However, it is best

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

to solve (14.11.1) first. The reason is as follows. When solving either

problem, the applied procedure can use an upper bound f on the global
minimum found when solving the other problem. See Section 12.5. As
will be seen in Chapter 15, it is more difficult to compute a bound when
the problem contains equality constraints. Since (14.11.1) has no equality

constraints, an upper bound f is more easily computed. Consequently, we
solve (14.11.1) before solving (14.11.3).

Suppose that when solving problem (14.11.2) or (14.11.3), the current
box xI is such that pi(xI) < 0 for some value of i. Then we can drop the
factor pi(x) from the function q(x).

A precaution is taken when generating the John condition for problem
(14.11.2) or (14.11.3) to enhance the chance that the interval Jacobian does
not contain a singular matrix. The John conditions for (14.11.2) are

∇f (x) + v∇q(x) = 0,

q(x) = 0

where v is a Lagrange multiplier. A column of the Jacobian of these equa-
tions generated by differentiation with respect to v is

[∇q

0

]

(14.11.4)

For simplicity, assume there are only two inequality constraints so that
q = p1p2. Then

∇q = p1∇p2 + p2∇p1.

We noted above that, for a given box xI, a factor pi does not occur in q if
pi(xI) < 0 and the box is infeasible if pi(xI) > 0. Therefore 0 ∈ ∇q(xI)

and the column of the Jacobian given by (14.11.4) contains the zero vector.
That is, the Jacobian is singular.

To avoid this, we can expand the John conditions in such a way that ∇q

is not evaluated over the entire box. We can do so by using the sequential
expansion of Section 7.3 and choosing the Lagrange multiplier v to be the
last variable in the sequence. As a result, ∇q in (14.11.4) is still evaluated

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

using interval arithmetic, but with real (noninterval) arguments. This en-
hances the chance that the resulting interval Jacobian does not contain a
singular matrix.

This procedure is followed whenever q contains two or more factors

14.12 PILLOW FUNCTIONS

A recurring problem in interval analysis is that of bounding the range of
a scalar function f of a vector x = (x1, · · · xn)

T over a box xI specified
by ai ≤ xi ≤ bi (i = 1, · · · , n). In particular, this problem arises as a
subproblem when solving systems of equations or in constrained or uncon-
strained optimization. The problem is solved if we solve the two inequality
constrained problems

minimize f (x) (14.12.1)

subject to ai ≤ xi ≤ bi (i = 1, · · · , n)

and

maximize f (x) (14.12.2)

subject to ai ≤ xi ≤ bi (i = 1, · · · , n) .

Frequently, we want only crude bounds on the range of f over the box
xI. Simply evaluating the function over the box provides bounds. (This
follows from the fundamental theorem of interval analysis.) However, such
bounds are often too far from sharp because of dependence. Beginning
with Moore (1966), methods have been sought that are better than simple
evaluation but less work than obtaining sharp bounds. Various methods of
this kind can be found in Ratschek and Rokne (1984). Recently, methods
using Bernstein polynomials have been studied. For example, see Garloff,
J. and Smith, A. P. (2000).

In this section, we provide a method of the “crude bound type” which
can be regarded as a simplification of peeling. It generally provides sharper
bounds than most “crude bound methods”; but falls short of providing sharp
bounds. Pillow functions are particularly helpful in providing an efficient

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

method for performing crude range tests (CRTs). See Walster and Hansen
(2004)1. It is not yet known how much impact on the speed of interval
algorithms can be achieved using CRTs.

Given a box xI defined by ai ≤ xi ≤ bi (i = 1, · · · , n), its center is
(c1, · · · , cn) where ci = (ai + bi)/2 (i = 1, · · · , n); and the half-width of
the i-th component is ui = (bi − ai)/2. For any integer m = 1, 2, · · · , the
box xI is contained in the region specified by p(x) ≤ 0 where

p(x) =
(

x1 − c1

u1

)2m

+ · · · +
(

xn − cn

un

)2m

− n.

Note that the graph of p(x) = 0 passes through all the corners of the box
and otherwise is outside the box.

For m = 1, the equation p(x) = 0 defines an ellipsoid. For higher
values of m, it approximates the box more closely. Because of the vague
resemblance of the graph of p(x) = 0 to a pillow, we call p(x) a pillow
function.

Because any point x ∈ xI satisfies p(x) ≤ 0, the range of f (x) for
x ∈ xI is contained in the range of f (x) as x varies such that p(x) ≤ 0.

1There is a mistake in the cited paper: In the second set of optimization problems, the
objective function should have a negative sign. Text surrounding equation (25) should be
corrected to read:

By simply reversing the signs in (17) of the objective function and the func-
tions in the inequality constraints, these optimization problems can be con-
verted into:

minimize
x∈xI

−f (x) (25)

subject to

{
c) − f (x) ≤ 0
d) − f (x) < 0

.

These optimization problems are identical to:

maximize
x∈xI

f (x)

subject to

{
c) f (x) ≥ 0
d) f (x) > 0

.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

That is, we can bound the range of f (x) over xI by solving the problems

minimize f (x) (14.12.3)

subject to p(x) ≤ 0

and

maximize f (x) (14.12.4)

subject to p(x) ≤ 0.

Problems (14.12.1) and (14.12.2) each have 2n constraints; but prob-
lems (14.12.3) and (14.12.4) involve only a single constraint. The former
problems can be reformulated using peeling (see Section 14.11); but the
constraints in the peeling formulation are more complicated than the con-
straint p(x) ≤ 0. The price paid for the simplification offered by (14.12.3)
and (14.12.4) is possible loss of sharpness. However, the larger the inte-
ger m is chosen, the sharper the bounds on the range because the pillow
function more sharply approximates the box xI.

Note that the inf and sup of f inside a pillow function might actually
occur in the box it surrounds. In this case, no sharpness is lost by replacing
the box by the pillow.

As an example, suppose we bound the range of the function

f (x1, x2) = x3
1 − x1x

2
2 + x2

1 − x1x2 − x2
2

over the box given by −5 ≤ x1 ≤ 5 and −3 ≤ x2 ≤ 3. This function was
studied by Neumaier (1988).

The range of f (x1, x2) over the box is approximately [−101.6, 151.1].
For m = 4,

p(x1, x2) =
(x1

5

)8 +
(x2

3

)8 − 2.

Solving (14.12.3) and (14.12.4) by the method of this chapter, we find that
the range of f (x1, x2) for p(x1, x2) ≤ 0 is approximately [−132.4, 191.9].
For m = 10, it is [−112.0, 165.5]. If we evaluate f (xI) directly, we obtain
[−194, 210].

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

There is an added virtue to this method for getting crude bounds on the
range. Suppose we are solving (14.12.3) for the minimum of f over the
prescribed region. Using the method of Section 14.8 to solve this problem,
we obtain sampled values of the objective function (at feasible points). We
also obtain a lower bound on the global minimum over the remaining search
regions at any given stage of the solution process. When these values differ
by a sufficiently small amount, we can terminate the procedure and accept
the current crude bounds. Thus, the procedure can be shortened so that
results conform to current needs for sharpness.

Pillow functions have other uses. For example, consider problems
such as the assignment problem. For an n-variable assignment problem,
the constraints xi = 0 or 1 (i = 1, ..., n) are imposed. That is, the solution
must occur on a corner of the box xI with sides given by Xi = [0, 1]. These
constraints can be replaced by the two conditions such as

n∑

i=1

(xi − 1

2
)2 = n

4

n∑

i=1

(xi − 1

2
)4 = n

16

These functions each pass through the corners of xI, but do not intersect
elsewhere. The problem is now expressed in terms of continuous rather
than discrete variables.

14.13 NONDIFFERENTIABLE FUNCTIONS

In this chapter, we have assumed that the constraint functions are contin-
uously differentiable and that the objective function is twice continuously
differentiable. In this section, we briefly consider how the algorithm of
Section 14.8 must be altered to solve problems in which these assumptions
are not satisfied.

If the objective function is not twice continuously differentiable, we
cannot use the Newton method to solve g = 0 nor to solve the John condi-
tions. Also, we cannot use box consistency to solve g = 0. If the objective

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

function is not continuously differentiable, we cannot use g to define a line
search.

If the constraints are not continuously differentiable, we cannot use box
consistency to solve them. Also, we cannot linearize them to solve them as
a system.

The resulting algorithm (without the indicated procedures) is, of course,
not as efficient as the full algorithm. Nevertheless, it solves the inequality
constrained optimization problem.

We noted in Section 7.11 that slopes can be defined for certain nondiffer-
entiable functions. This can sometimes provide the necessary expansions
when differentiability is lacking.

For an example of a nondifferentiable problem solved by interval meth-
ods, see Moore, Hansen, and Leclerc (1991).

Some nondifferentiable functions can be replaced by differentiable ones
(plus constraints). See Chapter 17.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 15

EQUALITY CONSTRAINED
OPTIMIZATION

15.1 INTRODUCTION

In this chapter, we discuss the global optimization problem in which the
only constraints are equality constraints. In this case, problem (13.1.1)
becomes

Minimize (globally) f (x) (15.1.1)

subject to qi(x) = 0 (i = 1, · · · , r) .

We assume f is twice continuously differentiable and that qi (i = 1, · · · , r)

is continuously differentiable. For cases in which these conditions do not
hold, see Section 15.15.

We assume an initial box xI(0) is given as in Section 12.3; and we seek

the global solution of (15.1.1) in xI(0). Thus, in effect, we are solving a
problem in which inequality constraints occur. However, we ignore these
constraints when seeking a solution. The box merely serves to restrict the

area of search. We assume xI(0) is sufficiently large that it contains the
solution to (15.1.1) in its interior.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

15.2 THE JOHN CONDITIONS

For problem (15.1.1), the function φ(t) given by (13.5.1) used to express
(part of) the John conditions becomes

φ(t) =










R(u0, v)

u0∇f (x) + v1∇q1(x) + · · · + vr∇qr(x)

q1(x)
...

qr(x)










(15.2.1)

where

R(u0, v) = u0 + E1v1 + · · · + Ervr − 1 (15.2.2)

if the linear normalization (13.2.2a) is used and

R(u0, v) = u0 + v2
1 + · · · + v2

r − 1 (15.2.3)

if the quadratic normalization (13.2.2b) is used.
If the latter normalization is used, we have the initial bounds 0 ≤ u0 ≤ 1

and −1 ≤ vi ≤ 1 (i = 1, · · · , r) for the Lagrange multipliers.
In the algorithm for the equality constrained optimization problem given

in Section 15.12, we apply hull consistency and box consistency to each
individual equality constraint to eliminate points of a box that are certainly
infeasible. We could also apply these procedures to the component equa-
tions of

u0∇f (x) + v1∇q1(x) + · · · + vr∇qr(x) = 0 (15.2.4)

from the John conditions. However, we do not. To do so requires that
we have bounds on the Lagrange multipliers. If these bounds are far from
sharp, the consistency procedures are not likely to be very effective when
applied to (15.2.4).

It is likely that bounds on the multipliers are reasonably sharp only
when the current box xI is reasonably small. In this case, a Newton method

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

is likely to be effective in finding any solution in xI. Therefore, there is no
need for consistency methods.

Suppose we use the nonlinear normalization (13.2.2b) of the Lagrange
multipliers when expressing the John conditions. To solve the resulting
system of equations using an interval Newton method, we need bounds
on the Lagrange multipliers. Since we choose not to apply consistency
methods to the John conditions, we have no other need for such bounds.
Therefore, we use the linear normalization (13.2.2a) so that no bounds are
needed for any procedure.

Suppose we use an interval Newton method to solve the John conditions.
To do so, we must solve a linearized form of (15.2.1). If we use the Gauss-
Seidel method, we require initial bounds on the Lagrange multipliers. If we
use Gaussian elimination or the “hull method” of Section 5.8, we do not.
Using the normalization (13.2.2a) precludes the use of the Gauss-Seidel
method until the Newton step has produced bounds on the multipliers.

In the initial stages of solving an equality constrained optimization
problem, a box over which the John conditions are to be solved will tend to
be large. As a result, the coefficient matrix of the linearized John conditions
will tend to be irregular. In this case, Gaussian elimination and the hull
method will fail to solve the linearized equations. One can hope to make
progress by using the Gauss-Seidel method. Otherwise, it is necessary to
split the box.

For the Gauss-Seidel method, we need bounds on the Lagrange mul-
tipliers. A reasonable procedure is the following. In the early stages of
solving an equality constrained problem, use the nonlinear normalization
(15.2.3). This provides crude bounds on the multipliers so that the Gauss-
Seidel method can be used. Later in the solution process when the box is
smaller (so that the hull method does not fail), we can switch to the linear
normalization (15.2.2). This switch cannot cause a zero of φ (t) to be lost.
That is, no minimum of φ (t) is lost.

Although we do not need bounds on the Lagrange multipliers (when
using (15.2.1)), we do need estimates of their values. We can begin with
u0 = 1 and vi = 0 (i = 1, · · · , r), for example. A successful step of a
Newton method provides interval bounds on the Lagrange multipliers. For
the next Newton step, the centers of these intervals can serve as the needed

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

estimates.

In our algorithm, we do not iterate the Newton procedure to conver-
gence. Instead, we alternate its use with other procedures. One reason
for this is that we do not want to spend effort to get narrow bounds on a
local (nonglobal) solution of the optimization problem. Another reason is
that other procedures for improving the bounds on a solution require less
computing effort, and thus take precedence.

15.3 BOUNDING THE MINIMUM

When considering the unconstrained optimization problem, we discussed

(in Section 12.5) how to use an upper bound fon the globally minimum value
of the objective function f (x). This bound allows us to delete subboxes of

the original box xI(0) in which the global solution cannot occur. We also
apply this procedure in the equality constrained case.

Now, it is a much more important procedure. In the unconstrained
case, we have other procedures for deleting points that cannot be the solu-
tion point. We use the gradient (see Section 12.4) and nonconvexity (see
Section 12.7). These procedures are not available for the equality con-
strained problem. In a sense, these conditions are replaced by the equality
constraints. However, there are generally fewer constraint equations than
gradient components (which must be zero in the unconstrained case) and
no nonconvexity inequalities.

This is one reason the upper bound f is more important in the equality
constrained case. Another reason is that computing narrow bounds on the

location and value of the global minimum requires an upper bound f that
is near the minimum solution value f ∗. We discuss this issue in Section
15.14.

In an unconstrained problem, we can compute f by evaluating f at any
point x. In a constrained problem, we must prove that x is feasible to assure
that f (x) is an upper bound on f ∗. In an inequality constrained problem,
we can prove that x is feasible by numerically verifying that it is certainly
feasible (as defined in Section 6.1).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Generally, no point can be certainly feasible for the equality constrained
problem because of uncertainty caused by rounding. Consider a point x. If
we make a single rounding error in evaluating qi(x) for any i = 1, · · · , r ,
then we do not know whether qi(x) is precisely zero even if it is. That is,
we do not know whether x is feasible or not.

The user might know a finite upper bound for the global minimum. If

so, this value can be input as the initial upper bound f. Failing this, there
are three ways to compute an upper bound. Each depends upon use of an
existence theorem. We discuss one of the methods in this section; and we
discuss the others in Sections 15.4 through 15.6.

Assume we use an interval Newton method for which Proposition
11.15.5 holds. This proposition says the following: Suppose we perform a
step of the interval Newton method by applying it to a system of nonlinear
equations over a box xI; and it produces a new box xI′. If xI′ ⊂ xI, then
there exists a solution of the system of equations in xI′.

Suppose we apply a step of such an interval Newton method to the John
conditions. Suppose that the new box produced by this step is contained in
the original box. Then we have proved existence of a (simple) solution of
the John conditions in the new box. Let xI′ denote the new box.

Since we have proved the existence of a solution of the John conditions,
there exists a feasible point in xI′. If we evaluate the objective function over
xI′ and obtain f (xI′) = [f (xI′), f (xI′)], then f (xI′) is an upper bound on

f at this feasible point in xI′ and, hence, is an upper bound on the global
minimum f ∗ of f .

When attempting to prove existence in this way, it is best to use the
linear normalization condition (13.2.2a) rather than a nonlinear one such
as (13.2.2b). The reason is as follows. Suppose we use a nonlinear nor-
malization. Then part of the input data to the Newton method consists of
bounds on the Lagrange multipliers. To prove existence, the new computed
interval bounds on the multipliers must be contained in the corresponding
input intervals.

But, if the linear normalization is used, no such input bounds on the
multipliers are needed. They can implicitly be assumed to be arbitrarily
wide. Therefore, the multipliers play no part in proving existence. This

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

makes it easier to obtain a proof of existence of a solution to the John con-
ditions. Note, however, that the accuracy of the estimates of the multipliers
affects the sharpness of the bounds computed (by the Newton step) for the
components of x.

Applying a Newton method to the John conditions requires quite a lot
of computing. We do so only if other methods for isolating the global
solution are too inefficient. We do not apply this method merely for the

sole purpose of finding a bound f on f ∗. However, if a bound is needed
in the main program and a Newton step applied to the John conditions
provides such a bound, we, of course, use it.

15.4 USING CONSTRAINTS TO BOUND THE MINIMUM

In this section, we describe two other procedures for computing an upper

bound f on the global minimum f ∗. Both procedures are based on one due
to Hansen and Walster (1990c). For a discussion of other variations, see
Kearfott (1996). As in Section 15.3, the procedures find a box guaranteed to
contain a feasible point and it bounds f over the box. A guarantee that a box
contains a feasible point is obtained by proving existence using Proposition
11.15.5.

Recently a method using the topological index has been developed to
prove existence of a solution of a system of equations. See Kearfott and
Dian (2000). We shall not discuss this subject.

Suppose we have proved that a feasible point exists in a box xI. We
evaluate f (xI) getting [f (xI), f (xI)]. Then f (xI) is an upper bound for the
global minimum f ∗. Each time we obtain such an upper bound, we update

our best upper bound, replacing it with min
(
f, f (xI)

)
.

In most (but not all) problems, the number r of equality constraints
is less than the number n of variables. Otherwise, it is generally possible
for the constraints themselves to determine the solution point(s) with no
variability remaining to minimize f . Therefore, we assume r < n.

Suppose we wish to determine whether there is a feasible point in a
given box xI. In Section 15.12, we describe how such a box is produced
by the main program. Let x denote a variable point in xI, and let c be the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

center of xI. We fix n− r of the variable components of x. For now, assume
we set xi = ci for i = r + 1, · · · , n. In Section 15.5, we make a specific
choice of which variables to fix.

Define the r-vector z = (x1, · · · , xr)
T . Consider the equation

h(z) = 0 (15.4.1)

where

hi(z) = qi(x1, · · · , xr , cr+1, · · · , cn) (i = 1, · · · , r)

and qi is a constraint function from problem (15.1.1). This is a system
of r equations in r unknowns. Let zI denote the r-dimensional box with
components Zi = Xi (i = 1, · · · , r).

If there exists a solution of (15.4.1) in zI, then it provides a feasible
point for problem (15.1.1). We describe two ways in which we can try to
prove the existence of a solution in zI.

15.4.1 First Method

One way is to apply a step of an interval Newton method to solve (15.4.1).
We can use any variant of the method for which Proposition 11.15.5 is true.
Let zI′ denote the solution box. If zI′ ⊂ zI, then there exists a solution of
h(z) = 0 in zI′. Therefore, there exists a feasible point in the n-dimensional
box

xI′ = (Z′
1, · · · , Z′

r , cr+1, · · · , cn)
T ,

which is a (partially degenerate) subbox of xI.
If zI′ ⊂ zI, the interval Newton step can be iterated to reduce the size of

the box bounding the feasible point. The smaller the box, the (generally)

smaller the upper bound on f we compute by evaluating f over the box.
Thus, we can iterate as long as sufficient progress is made reducing the
current box. However, f might be much smaller at a feasible point in a box
yet to be processed. Therefore, we do not want to spend too much effort to
sharply bound a given feasible point.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Suppose we have proved existence of a feasible point in a given box.
If we iterate the Newton method, the feasible point is in each computed
subbox. See Theorem 11.15.1. Therefore, we do not need proof of existence
in subsequent iterations. Note however, that this is true only if we do not
change the values of the constants cr+1, · · · , cn.

Assume we have not proved that zI contains a feasible point and that
zI′ is not contained in zI. If there is a feasible point in zI, it must be in
zI′′ = zI ∩ zI′. If we choose to repeat the procedure we use the box

xI′ = (Z′′
1 , · · · , Z′′

r , cr+1, · · · , cn).

We choose zI′′ to have the same center and shape as zI ∩ zI′, but we reduce
the width. See below.

A large portion of the original box can often be deleted using the con-

dition f (x) ≤ f (see Sections 12.5 and 14.3) even if f is not very close
to f ∗. Therefore, we try to prove existence of a feasible point in an early
stage of the solution of the optimization problem while the current box is

large. This provides a finite value for f. As we point out in Section 15.14,
it is important to know whether there is at least one feasible point in the
original box. Therefore, we make a special effort to obtain an initial finite

value of f.

If there are a large number of constraints, our procedure for bounding
a feasible point is costly in computing effort. Therefore, if we already have

a finite value of f, we make less effort to prove existence of a feasible point
in a given box. Also, we do not try to prove existence of a feasible point in

a given box xI unless f [m(xI)] < f where m(xI) is the center of xI.

We now consider criteria for deciding how much effort to expend in
seeking a bound on a feasible point.

When we try to prove existence of a feasible point in a given box, we
want the size of the box to be such that there is a high likelihood of success.
If we choose it too small, it is not likely to contain a feasible point. If we
choose it too large, the linearized form of the system h(z) = 0 given by
(15.4.1) is likely to contain a singular matrix and we cannot prove existence
of a feasible point. We choose a box size based on previous results. We
now derive our procedure.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

When we use an interval Newton method to solve the system (15.4.1),
we precondition the Jacobian (see Section 5.6) to obtain a coefficient matrix
that we now denote by M. We can prove existence of a feasible point only
if M is regular.

Suppose we have tried to prove existence in one or more boxes. Let
w

q

R denote the width of the largest box for which M is regular. Let w
q

I

denote the width of the smallest box for which M is irregular. Initially,

set w
q

R = 0 and w
q

I = w(xI(0)
) where xI(0) is the initial box in which the

minimization problem is to be solved. When we try to prove existence, we

choose the width of the beginning box to be wave = 1

2
(w

q

R + w
q

I). This

strikes a balance between too big and too small a box.
We now list the steps we use to update w

q

R and w
q

I and to make our
decision whether to try to prove existence of a feasible point. Let m(xI)

denote the center of the current box xI. When we say we “shrink” a box, we
mean we replace it by another with the same center and the same relative
dimensions but of width reduced by some factor.

At any stage in the following steps, we call the current box xI even
though it can change as we proceed through the steps.

1. If f [m(xI)] > f terminate this procedure

2. If f = +∞, set MAXCOUNT = 8. If f < +∞, set MAXCOUNT
= 4.

3. Set COUNT = 0.

4. If w(xI) > wave, shrink xI so that it has width wave.

5. If COUNT = MAXCOUNT, terminate the procedure.

6. Replace COUNT by COUNT + 1.

7. Apply a Newton step to try to solve (15.4.1) for z. (Note that the r

components of z are generally not the first r of components of x.

See Section 15.5.) If successful (because M is regular), go to Step 9.
Note: Use the hull method of Section 5.8 to solve the preconditioned
equations in the Newton step.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

8. Update w
q

I . Shrink xI to one eighth its size. Go to Step 5.

9. Update w
q

R. Denote the result of the Newton step by xI′. If xI ∩ xI′

is empty, terminate the procedure.

10. If xI′ ⊂ xI (so that we have proved existence), update f.

11. If f [m(xI)] < f, go to Step 5.

12. Terminate the procedure.

Kearfott (1996) reports that a method similar to this works well in practice.
We could use epsilon-inflation to try to prove existence of a feasible

point. This procedure was introduced by Rump (1980) and discussed in
detail by Mayer (1995). See, also, Kearfott (1996). A first step in the pro-
cedure is designed to prove existence of a solution of a system of equations
at or near a tentative solution found by a noninterval algorithm. Thus, it is
an intensive effort to prove existence of a point that is reasonably certain
to exist. Our case is different. We try to prove existence in many boxes
that might or might not contain a solution. Therefore we use a simpler
procedure. By applying our relatively simple procedure to many boxes, we
increase the likelihood of success.

15.4.2 Second Method

Our remaining method for trying to prove existence of a feasible point uses
essentially the same procedure as the one we have just described. Now,
however, we use hull consistency (see Chapter 10) instead of a Newton
method. Proof of existence is obtained using Theorem 10.12.1.

The Newton method can be effective in proving existence because it
asymptotically converges quadratically (to simple solutions). In this case,
the box zI′ described above tends to be much smaller than zI. This enhances
the chances that zI′ ⊂ zI as required to prove existence. Hull consistency
cannot be expected to have quadratic convergence in the multidimensional
case because it is a one-dimensional procedure. Normally, we make no
special effort to try to prove existence using it. However, in the algorithm
in Section 15.12, we apply hull consistency to a preconditioned system of

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

equations. For this step, it can be advantageous to implement hull consis-
tency so that it has quadratic convergence as a one dimensional process.
See Section 10.6.

In the next two sections, we discuss ways to increase the likelihood of
proving that a box contains a feasible point.

15.5 CHOICE OF VARIABLES

For simplicity, we assumed in the previous section that we fixed xi = ci

for the indices i = r + 1, · · · , n. By appropriately choosing which n − r

variables to fix, we can enhance the chance of being able to prove the
existence of a feasible point in a given box. We now consider how this can
be done.

We first note that we might be able to reduce the number of constraints
by fixing appropriate variables. As an example, consider problem 61 of
Hock and Schittkowski (1981). This is a problem in three variables with
two constraints of the form

q1(x) = 3x1 − 2x2
2 − 7 = 0,

q2(x) = 4x1 − x2
3 − 11 = 0.

If we fix any one of the three variables, we can solve the constraint equations

for the other two

(

provided x ≥ 11

4

)

. That is, we can determine a feasible

point directly.
For other problems, we might be able to determine a subset of the

variables by fixing one or more appropriate variables. This reduces the
number of remaining constraints. However, to simplify the discussion,we
assume all the constraints remain.

We now consider an illustrative example to show that care must be taken
in choosing which variables to fix. Consider a two-dimensional problem
in which there is a single constraint

q(x1, x2) = x2 − 1 (15.5.1)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

that is independent of x1. Let a box xI have components X1 = X2 =
[−1, 1]. If we fix the second variable (to be the midpoint of X2), we set
x2 = 0. In the procedure described in Section 15.4, we try to bound a point
of the form (x1, 0)T satisfying (15.5.1). But, there is no such point.

However, suppose we fix the first variable to be the center x1 = 0 of
X1. Now we wish to find a point of the form (0, x2)

T satisfying (15.5.1).
This is easily done.

We now consider a procedure designed to exploit the idea implicit in
this example. Consider the r by n matrix with elements

Mij (x) = ∂qi(x)

∂xj

(i = 1, · · · , r; j = 1, · · · , n). (15.5.2)

We linearize q about the center x of a box xI. When we do so, some of
the arguments of Mi,j can be real as described in Section 7.3. However,
for the immediate purpose, they can all be real. Denote the resulting r

by n coefficient matrix by M(x, xI) and the linearized system by q(x) +
M
(
x, xI

)
(y − x) = 0.

To solve such a system of linear interval equations when it is square,
we precondition the system by multiplying by an approximate inverse of
the center of the coefficient matrix. (See Section 5.6). We do a similar
preconditioning in this nonsquare case.

Let Mc denote the center of the interval matrix M(x, xI). We use Gaus-
sian elimination with both row and column pivot searching to transform Mc

into a matrix M′ in upper trapezoidal form. It is the column interchanges
for pivot selection that “chooses” the variables to fix. That is, M ′

ij = 0
for all i > j (i = 2, · · · , r; j = 1, · · · , i − 1). We make a final column
interchange (if necessary) so that the final element in position (r, r) has the
largest magnitude of any element in row r of the final matrix.

Suppose that, in addition to the elements deliberately zeroed, the ele-
ments M ′

ij of M′ are zero for all i > m for some m < r . Then the rows of
Mc are (at least approximately) linearly dependent. In this case, we aban-
don our effort to find a feasible point in the current subbox of the initial
box. We hope to be successful with the next subbox generated by the main
algorithm.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

However, if M′ has a nonzero element M ′
ii for all i = 1, · · · , r, then we

proceed. If no column interchanges are made in doing Gaussian elimination
to produce M′, then it is the last n− r variables that we fix. That is, we set
xi = m(Xi) for i = r + 1, · · · , n. If column interchanges are made, we fix
the variables corresponding to the columns that are interchanged into the
last n − r positions.

Note that if none of the constraints depend on the variable xj for a
particular index j = 1, · · · , r , then Mij = 0 for all i = 1, · · · , r . In this
case, the elimination process interchanges the j -th column (all of whose
elements are zero) into one of the last n− r columns. This assures that xj is
fixed and set equal to m(Xj). That is, only the relevant variables are used
when trying to find a feasible point.

If all the constraints are independent of xj , then f cannot be. Otherwise
the problem does not involve xj . Our process for finding a feasible point
(when successful) finds a box xI known to contain a feasible point. This
box has n − r degenerate components; and the j -th, is one of them. The
(degenerate) j -th component of xI can be chosen to have any value in the

j -th component of the initial box xI(0)
.

As pointed out in Section 15.4, if there is a feasible point in xI, then f (xI)

is an upper bound for f ∗. We are free to try to minimize f (xI) by choosing
xj (and any other variables of which the constraints are independent) as

best we can in xI(0). However, one can simply set xj equal to the center of
the j -th component of the current box.

After we have decided which variables to fix, we again do the lineariza-
tion. The reason is as follow. The derivatives that determine the linearized
equations are narrower after fixing some variables as point values than be-
fore. Therefore, a Newton step using the linearized equations has a better
chance of proving existence of a solution. The extra effort is warranted
because it is important to obtain proof of existence. Note that when we lin-
earize this time, we want to use the kind of expansion described in Section
7.3 so that some of the arguments of the elements of the coefficient matrix
are real rather than interval. We want the widths of the elements as small
as possible to enhance the chance that the Newton method will be able to
prove existence.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

In Section 15.4.1, we considered a box zI′ obtained from a Newton step
applied to a box zI. We might find that zI′ ∩ zI is empty. This does not
prove that there is no feasible point in xI. It merely means that there is no
feasible point in xI having the values of the fixed variables. Nevertheless,
if zI′ ∩ zI is empty, we abandon our effort to find a feasible point in xI.

Even if there is a feasible point in xI, the interval Newton method is not
guaranteed to prove this is, in fact, the case. To prove existence, we must
have zI′ ⊂ zI. This condition never holds if the solution sought is a singular
solution (in the variables not fixed). This possibility is reduced by the way
we choose which variables to fix.

The condition zI′ ⊂ zI can fail to be satisfied even when the solution is
simple and well conditioned. This is more likely when the solution is on or
near the boundary of xI. If we have not proved existence of a feasible point
in a final box, we can take steps to try to avoid this difficulty by choosing
a different box.

For example suppose Zi = [a, b] and Z′
i = [c, d] and a < c < b < d .

We can extend Zi ∩ Z′
i = [c, b] by replacing the upper endpoint b by

b +α(b − c) for some value of α such as 0.1. It doesn’t matter whether the
feasible point is in zI or not. We only require that the box be in the initial

box xI(0)
. By extending Z′

i in this way for each i = 1, · · · , r , the next

iteration has a better chance of getting a new box, say zI′′ in the extended
version of Zi ∩ Z′

i .

15.6 SATISFYING THE HYPOTHESIS

We must have zI′ ⊂ zI to prove existence of a feasible point. Therefore, it
behooves us to try to assure that this condition is satisfied when possible.
One way to enhance the chance of satisfying this condition is to make zI′

as small as possible relative to zI.

To apply an interval Newton method to solve an equation h(z) = 0,
we linearize h(z) by expanding about a point, say z0 in zI. The interval
coefficients in the expansion are narrower if slopes, rather than derivatives,
are used to obtain the expansion. This causes zI′ to be smaller.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Also, the closer the expansion point z0 point is to a solution, the smaller
zI′ will be. Therefore, we insert a step into the procedure described in
Section 15.4. We try to find a good approximation for a zero in zI before we
apply the interval Newton method. We then choose z0 to be this approximate
point.

The procedure we use to compute the approximation is the noninterval
Newton method described in Section 11.4. In this procedure, we use an
approximate inverse of the Jacobian of h. This Jacobian is the one (in slope
or derivative form) that we use next in applying the interval Newton step to
try to prove the existence of a feasible point as described in Section 15.3.
The approximate inverse of the center of the Jacobian is found while doing
the elimination process described in Section 15.5. Note the similarity to
the preconditioning process in Section 11.2.

Recall that, in Section 15.5, we used Gaussian elimination to transform
the matrix Mc into trapezoidal form. To compute the approximate inverse,
we also perform the elimination operations on the matrix that begins as
the identity matrix of order r . When doing these operations (but not when
operating on Mc), we can ignore any column interchanges. When Mc has
been transformed into trapezoidal form, we have transformed the identity
matrix into a matrix we call B′.

We can now drop the last n − r columns of the modified form of Mc.
We then do the remaining elimination operations to transform the resulting
matrix of order r into the identity matrix. Doing these operations on B′
yields the matrix B, which is the (approximate) inverse of the center of the
retained submatrix of Mc. We use this noninterval matrix B as described in
Section 11.4 to find an approximate solution z0 to h(z) = 0.

15.7 A NUMERICAL EXAMPLE

In this section, we discuss a numerical example illustrating the ideas of the
previous two sections. Problem 39 of Hock and Schittkowski (1981) is

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Minimize f (x) = −x1

subject to q1(x) = x3
1 − x2 + x2

3 = 0,

q2(x) = x2
1 − x2 − x2

4 = 0.

(We ignore the fact that if we fix x1 and x2, we can solve for x3 and x4.)
The matrix given by (15.5.2) is

M(x) =
[

3x2
1 −1 2x3 0

2x1 −1 0 −2x4

]

.

Suppose the current box has components X1 = [−1.1, −0.7], X2 =
[−1.2, 1], X3 = [0, 2], and X4 = [0, 1.6]. The center of this box is
x = (−0.9, −0.1, 1, 0.8)T . We find the center of M(xI) to be

Mc =
[

2.55 −1 2 0
−1.8 −1 0 −1.6

]

.

Using Gaussian elimination to produce a zero in position (2, 1) of the
matrix, we obtain (approximately)

M
′ =

[
2.55 −1 2 0
0 −1.706 1.412 −1.6

]

.

Since no column interchanges were used, we fix the last two variables.
Thus, c3 = m(X3) = 1 and c4 = m(X4) = 0.8.

We now use an interval Newton method to solve the equations

hi(z1, z2) = qi(z1, z2, c3, c4) (i = 1, 2).

That is,

h1(z) = z3
1 − z2 + 1 = 0, h2(z) = z2

1 − z2 − 0.64 = 0 (15.7.1)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The Jacobian of h(z) is

J(z) =
[

3z2
1 −1

2z1 −1

]

.

The components of the box zI are Z1 = X1 = [−1.1, −0.7] and Z2 =
X2 = [−1.2, 1]. The center of zI has components z1 = −0.9 and z2 =
−0.1. Using (7.3.6), we expand h about the center of zI and obtain

[
z3

1 − z2 + 1
z2

1 − z2 − 0.64

]

+
[

3Z2
1 −1

2Z1 −1

] [
z′

1 − z1

z′
2 − z2

]

= 0.

Substituting the appropriate numerical quantities into this equation, we
obtain

[
0.371
0.27

]

+
[[1.47, 3.63] −1

[−2.2, −1.4] −1

] [
z′

1 + 0.9
z′

2 + 0.1

]

= 0. (15.7.2)

The first two columns of the matrix Mc form the matrix
[

2.55 −1
−1.8 −1

]

.

For use in the interval Newton method, we want an approximate inverse B
of this matrix. The operation to get Mc from M is a first step in computing
B. Completing the process and using B as a preconditioner when applying
the interval Newton method, we obtain

zI′ =
[[−0.9352, −0.9173]

[0.1856, 0.2380]
]

.

We indicate this result using four significant decimal digits. Higher preci-
sion was used in the computations.

Since zI′ ⊂ zI, there exists (by Proposition 11.15.5) a solution of
(15.7.1) in zI′. That is, there is a feasible point x with −0.9352 ≤ x1 ≤
−0.9173, 0.1856 ≤ x2 ≤ 0.2380, x3 = 1, and x4 = 0.8. The actual feasi-
ble point in xI with x3 = 1 and x4 = 0.8 is at (approximately) x1 = −0.9234
and x2 = 0.2126.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Since the objective function is f (x) = −x1, and since we know there
is a feasible point with x1 ∈ [−0.9352, −0.9173], we now have the upper

bound f = 0.9352 on the global minimum f ∗.

If we use the inner iteration of Section 11.4 to get a better point about
which to expand h, and if we use slopes instead of derivatives to do the

expansion, we obtain f = 0.9234, which is correct to four digits.

The best feasible value of f in the test box is 0.7 at x1 = 0.7, x2 = 0.49,
x3 = (0.833)1/2, and x4 = 0. We have not found this best value because
we fixed x3 and x4 to have values at the centers of their interval bounds;
and this is not where the best feasible point occurs in the box. However,
the test box does not contain the solution point x∗ so we must be satisfied

with a suboptimal value of f, anyway.

The global minimum for this problem is f ∗ = −1, which occurs at
x = (1, 1, 0, 0)T . Our upper bound on f ∗ is far from sharp. However, when
solving a problem by the algorithm given in Section 15.12, the process for
getting an upper bound on f ∗ is applied for smaller and smaller subboxes
of the initial box. Thus, the upper bound is successively improved.

15.8 USING THE UPPER BOUND

Assume we have computed an upper bound f on the global minimum as
described sections 15.4 and 15.5. Alternatively, we might be given a finite
upper bound by the user. In either case, we can now eliminate any (feasible

or infeasible) point x for which f (x) > f.

Given a box xI, we can evaluate f (xI) and if f (xI) > f, we can eliminate
xI. However, there is a better alternative. As noted in Section 10.10, for
essentially the same amount of computing needed to evaluate f (xI), we

can apply hull consistency to the relation f (x) ≤ f. This also eliminates xI

if f (xI) > f. For the same effort, hull consistency might eliminate part of
xI. We can also apply box consistency to this inequality.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

15.9 USING THE CONSTRAINTS

The main program for solving the equality constrained optimization prob-
lem, generates a sequence of subboxes of the initial box. We can apply hull
and box consistencies to each constraint equations qi(x) = 0 (i = 1, · · · , r)

to delete infeasible points from such a subbox. We can also linearize and
“solve” the constraint equations in the same way as described in Section
15.4.1. In that procedure, we try to prove existence of a feasible point
in a box. Here we use the procedure to try to eliminate infeasible points
from a box. To do so, we fix n − r of the n variables so that we have the
same number r of variables as constraints. In that procedure, the variables
chosen to be fixed are given point values. Now, however, we fix them by
replacing them by their interval bounds. This causes a slight change in the
procedure. When we replace variables by points, it can be worth while to
repeat the process of expanding the constraint equations. This is because
the derivatives defining the expansion are narrowed by the replacement.
If we replace variables by their interval bounds, this narrowing does not
occur. Therefore, re-expanding is of no value.

Before continuing, we explain why we do not use a rather obvious alter-
native way of choosing which variables to fix. Suppose we have expanded
the equality constraints with respect to all the variables. Then we have the
information needed to (roughly) determine which variables cause a given
constraint to change the most (or least) over the current box. See Section
11.8. We might choose to fix those variables that cause little change.

However, the procedure in Section 15.4.1 is designed to cause a Newton
step to make a larger reduction of a box irrespective of how much change
is made in the range of the constraints. We consider the former aspect to
be of more value than the latter

Another topic deserves mention. Suppose we fix some variables before
we linearize the constraints. Then we have fewer derivatives to determine;
and we thus save some work. However, we do not linearize the constraints
unless there is reason to believe that the box is so small that a linearized
form will yield sharper bounds on the range over the box than the original
unexpanded form. See Section 14.7. In this case, the extra effort should
provide greater reduction of the box used.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We now repeat some of the discussion from Sections 15.4 and 15.5 that
is relevant to the current discussion of use of constraints. From Section 7.3,
we can expand a constraint in the form

qi(y) = qi(x) +
n∑

j=1

Jij (x, xI)(yj − xj) (i = 1, · · · , r) (15.9.1)

where

Jij (x, xI) = ∂

∂xj

qi(X1, · · · , Xi, xi+1, · · · , xr) (15.9.2)

Note that, in theory, the choice of which variables are real in (15.9.2) could
be related to our present question of which variables to fix. However, we do
not know which variables to fix until after we have obtained the expansion
(15.9.1). We do the following steps. Compare the algorithm in Section
11.12.

1. Compute a real matrix Jc, which is the approximate center of the r

by n matrix J(x, xI).

2. Do Gaussian elimination on Jc using both row and column pivoting
to transform it into a form in which elements in positions (i, j) are
zero for 1 ≤ i ≤ r and 1 ≤ j ≤ r except for i = j. In the process, do
the final column pivoting so that the final element in position (r, r)

is largest in magnitude among the elements in positions (r, j) for
j = r, · · · , n.

3. Choose the variables corresponding to those now in the final columns
r + 1, ...n to be those to replace by their interval bounds.

Assume we have done these three steps. For simplicity, assume it is
variables with indices r +1, · · · , n that we fix. After fixing these variables,
the constraint equations become

Qi +
r∑

j=1

Jij (x, xI)(yj − xj) = 0 (i = 1, · · · , r) (15.9.3)

where

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Qi = qi(x) +
n∑

j=r+1

Jij (x, xI)(Xj − xj) (i = 1, · · · , r) . (15.9.4)

Equations (15.9.3) are r equations in r unknowns. We solve them using
our standard procedure for solving square systems. The first step in doing
so is to precondition the system as described in Section 5.6. Note if we
apply the steps of the elimination procedure in Step 2 above to an identity
matrix, we obtain the desired preconditioning matrix. The second and final
step is to solve the preconditioned equations by either the hull method,
Gaussian elimination, or the Gauss-Seidel method. If the preconditioned
coefficient matrix is regular, we find the hull as described in Section 5.8.
If it is not regular, we apply a step of the Gauss-Seidel method of Section
5.7.

To obtain equations (15.9.3), we linearized the constraint equations over
a box. We noted in Section 12.8 (and elsewhere) that trying to solve such
a system can be unsuccessful when the box is large. Since the processes
of linearizing and solving are expensive in computing effort, we want to
bypass the procedure when the box is “too large”.

In Section 11.11, we described a linearization test for deciding whether
to bypass such a procedure or not. We use the same procedure to decide
whether to generate and solve (15.9.4). This decision is made indepen-
dently of any decision of whether to use other procedures that entail linear
expansions. For example, we make a separate decision whether or not to
try to solve the John conditions by a Newton method.

The procedure to linearize and solve the equality constraints involves
a considerable amount of work. The question arises whether it is worth
the effort. In Sections 14.6 and 14.7, we discussed similar questions for
systems of inequality constraints. We gave a criterion to decide whether to
do the linearization procedure in various cases.

After variables have been fixed in the current procedure, we have a
square coefficient matrix. The linearization test could be based on whether
this matrix is regular or not (as in Section 11.11). However, suppose the
number of constraints is small relative to the number of variables. Then,

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

even when the matrix is regular, there might be little progress in reducing
the box.

Therefore we use a linearization test based on whether sufficient re-
duction (as defined using (11.7.4)) of a box by the procedure is made or
not. See Section 14.7 where the same criterion is used to decide whether
to solve the inequality constraints.

15.10 INFORMATION ABOUT A SOLUTION

The quality of the information we gain about the solution of an equality
constrained problem depends on how successful we are at proving the ex-
istence of feasible points in the initial box. We discuss this aspect in this
section.

Suppose we are unable to prove the existence of any point at which the
equality constraints are satisfied. Then we do not know if the problem has
a solution. Suppose we do prove the existence of a feasible point at which
f is much greater than its minimum value f ∗; but we are unable to prove
existence of any feasible point where f is at or near its (feasible) minimum.
Then we know a solution exists; but if the algorithm terminates with several
boxes remaining, we do not know which one(s) contain the global solution.

Let f denote the final value of the upper bound on f ∗ after termination
of our algorithm. If the procedures described earlier in this chapter succeed
in finding such a quantity, then it is finite. Otherwise, it retains its initial
value (which is ∞).

If our algorithm deletes all of the original box xI(0), then we know there

is no feasible point in xI(0). Suppose it deletes all of xI(0) except for a single
box xI, but we have not proven the existence of a feasible point. Then we
do not know if there exists a solution; but we know that if one exists, it must
be in xI.

Suppose that our algorithm ends up with two boxes X1 and X2 that sat-
isfy whatever convergence criteria we impose; and that f (X1) < f (X2) <

f < +∞. Even though f (X1) < f (X2), the global solution can be in X2

because X1 might not contain a feasible point. The situation is obviously
more uncertain if there are more than two such boxes.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Some authors suggest that we accept a point x̃ as feasible if |qi (̃x)| < ε

for all i = 1, · · · , r (for some ε > 0). This can cause difficulty. Suppose
we accept such a point x̃ as feasible when it is not, and suppose that f (̃x) <

f ∗. We could then delete the solution point x∗ because we would have
f (x∗) > f (̃x). Therefore, we must not use the relation f (x) > f (̃x) to
eliminate a point x.

Even if we do not prove that a feasible point exists, we can assure that
the constraints are “nearly” satisfied at every point in the final box(es).
Denote

∣
∣qi(xI)

∣
∣ ≤ εq (i = 1, · · · , r) (15.10.1)

In our algorithms for unconstrained or for inequality constrained optimiza-
tion, we require that for any final box xI, the conditions w(xI) ≤ εX and
w[f (xI)] ≤ εf hold. For the equality constrained problem, we add the
condition that (15.10.1) hold for every final box xI. However, we do not
assume that xI contains a feasible point simply because (15.10.1) holds.

Despite the possible uncertainties concerning the computed solution to
the equality constrained case, we have much more certainty than for non-
interval algorithms. The final box(es) are always small if the tolerance εX

is small; and any global solution is guaranteed to be in one of them. In most
cases, we have very good bounds on x∗ and f ∗ and they are guaranteed to
be correct. In other cases, the small boxes contain both local and global
solutions. A final box might not contain a minimum. Use of smaller error
tolerances or higher precision arithmetic might determine this to be the
case.

We have pointed out that information we gain about the global minimum

depends strongly on how close the final bound f is to the globally minimum
value f ∗. We now note that there are reasons to expect that this bound is
generally quite satisfactory.

One danger in trying to prove existence of a feasible point in a given
box is that the methods for doing so fail if the point is not a simple zero of
the equations being solved. This is not a crucial fact because our algorithm
seeks a feasible point in various different boxes and fixes different subsets
of the variables. We can expect that all or most of the various feasible points
sought are simple solutions of the equations to be solved.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

If a box is large, a Newton step or an application of hull consistency
is unlikely to prove existence of a solution of a system of equations in
the box. These methods are more likely to prove existence if the box is
small and the feasible point is near the center of the box. However, as our
algorithm proceeds, it deletes points that are not feasible. Consequently it
concentrates the search on progressively smaller boxes that are more and
more likely to contain feasible points near their centers and hence increase
the chance of proving existence. Thus, we are likely to prove existence of
a feasible point near the global minimum point.

15.11 USING THE JOHN CONDITIONS

To apply a step of a Newton method requires quite a lot of computing. When
the Jacobian of the John condition function φ(t) (as given by (15.2.1))
contains a singular real matrix, the Newton step can be completed only
by using a Gauss-Seidel step. To do so requires bounds on the Lagrange
multipliers. We are unlikely to obtain useful bounds unless the box is small.
Therefore computations are wasted. In Section 11.11, we derive a criterion
(11.11.1) for deciding whether or not to apply a Newton step to a system of
nonlinear equations. In Section 14.7, we used the same criterion to decide
whether to apply a Newton method to the John conditions for an inequality
constrained problem. A Newton step is bypassed if the criterion indicates
that the step is likely to be unsuccessful. We use the same criterion when
solving the equality constrained problem. That is, we apply the Newton
method to the John conditions over a box xI only if

w(xI) ≤ 1

2
(wJ

I + wJ
R) (15.11.1)

where wJ
I and wJ

R are defined as in Section 14.7 (see (14.7.1)).
We also use a Newton method when trying to prove the existence of a

feasible point. See Section 15.4. However, this procedure reduces the size
of the box when necessary so there is no need to decide whether the box in
which the procedure is applied is large or not.

As explained in Section 14.7, we avoid using linearization when the
box is so large that linearization is not effective. Thus, besides avoiding the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Newton method when the box xI is large, we also avoid other linearizations.

As in Section 14.7, we linearize f (x) ≤ f only if

w(xI) ≤ 1

2
(w

f

I + w
f

S). (15.11.2)

We linearize the constraints only if

w(xI) ≤ 1

2
(w

q

I + w
q

S). (15.11.3)

This relation is defined in Section 14.7 for inequality constraints. Now the
constraints are equalities. Similarly, when the box is large, we avoid using
the method of Section 12.5.4, which involves a Taylor expansion of the

relation f (x) ≤ f through quadratic terms.

15.12 THE ALGORITHM STEPS

In this section, we list the steps of our algorithm for computing global
solution(s) to the equality constrained optimization problem (15.1.1).

Generally, we seek a solution in a single box specified by the user.
However, any number of boxes, can be specified. The boxes can be disjoint
or overlap. However, if they overlap, a minimum at a point that is common
to more than one box is separately found as a solution in each box containing
it. In this case, computing effort is wasted.

If the user does not specify an initial box or boxes, we use a default box
described in Section 11.10. We assume the box(es) are placed in a list L1

of boxes to be processed.
Suppose the user of our algorithm knows a point x that is guaranteed

to be feasible. If so, we use this point to compute an initial upper bound

f on the global minimum f ∗. If x cannot be represented exactly in the
computer’s number system, we input a representable box xI containing x.

We evaluate f (xI) and obtain [f (xI), f (xI)]. We set f = f (xI), which is
guaranteed to be an upper bound on the global minimum f ∗. If no feasible

point is known we set f = +∞ as our upper bound for f ∗.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The user might know an upper bound f on f ∗ even though he might not

know where (or if) f takes on such a value. If so, we set f equal to this
known bound. If the bound is not representable in the computer’s number

system, we set f equal to some machine number at least as large as the
known bound.

We assume the user has specified a box size tolerance εX, and an objec-
tive function width tolerance εf and tolerance εq on the width of the con-
straint functions over a final box. At termination, the conditions w(xI) ≤
εX and w[f (xI)] ≤ εf and |qi(xI)| ≤ εq (i = 1, · · · , r) hold for each final
box xI.

Thus, to initialize our algorithm, the user specifies εX, εf , and εq , and
the initial box(es). The box(es) are placed in list L1. In addition, we specify

(or compute from x as just described) a bound f when one is known. The

system initializes the parameters defined in Section 15.11. Let xI(0) denote
the box of largest width put into the list L1 by the initialization process.

The system sets wJ
R = w

f

S = w
q

S = w
Q
S = 0 and wJ

I = w
f

I = w
q

I = w
Q
I =

w(xI(0)
). The system also sets flag F equal to zero.

The steps of the algorithm are performed in the order given except as
indicated by branching. A box xI can be changed in a given step of the
algorithm. If so, we continue to call it by the same name, xI. In various
steps of the algorithm, we use such a box xI to compute a new box (say
xI′). When we refer to the “result” of such a computation, we mean the
intersection xI ∩ xI′.

1. For each initial box xI in the list L1, evaluate f (xI). Denote the result
by [f (xI), f (xI)].

2. If f < +∞, delete any box xI from L1 for which f (xI) > f. This
can be done while applying hull consistency. See Section 10.10.

3. If L1 is empty, go to Step 47. Otherwise, find the box xI in L1 for

which f (xI) is smallest. For later reference, call this box xI(1). This

box is processed next by the algorithm. Delete xI(1) from L1.

4. If flag F = 0, go to Step 4(a). If flag F = 1, go to Step 4(b).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

(a) If w(xI) ≤ εx and w[f (xI)] ≤ εf , put xI in list L2 and go
to Step 3. Otherwise, go to the next step. Note that Step 4 is
repeated elsewhere in the algorithm. If it is called in Step k,
then “next step” refers to step k + 1. When it is actually called
as Step 4, “next step” is Step 5, but when it is called in Step 12,
for example, the next step is Step 13.

(b) If |qi(x
I)| ≤ εq for all i = 1, ..., r , put xI in list L2 and go to

Step 3.

5. Apply hull consistency (see Chapter 10) to the constraint equations
qi(x) = 0 for i = 1, · · · , r . If it is proved that there is no point in xI

that satisfies any one of the constraints, go to Step 3.

6. Repeat Step 4.

7. If xI(1) (as defined in Step 3) has been sufficiently reduced (as defined
using (11.7.4)), put xI in the list L1 and go to Step 3.

8. If f < +∞, apply hull consistency to the relation f (x) ≤ f . If the
result is empty, go to Step 3.

9. Compute an approximate center x of xI and an approximate value of
f (x). If f (x) ≥ f , go to Step 12.

10. For later reference call the current box xI(2). Use the procedure
described in Sections 15.4 through 15.6 to try to reduce the upper

bound f.

11. If f was not changed in Step 10, go to Step 13. Otherwise, apply

hull consistency (See Chapter 10) to the relation f (x) ≤ f. If the
result is empty, go to Step 3.

12. Repeat Step 4.

13. If xI(1) (as defined in Step 3) has been sufficiently reduced (as defined
using (11.7.4)), put xI in L1 and go to Step 3.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

14. Apply box consistency (see Section 10.2) to the constraint equations
qi(x) = 0 for i = 1, · · · , r . If it is proved that there is no point in xI

that satisfies any one of the constraints, go to Step 3.

15. Compute an approximate center x of xI and an approximate value of
f (x). If f (x) ≥ f , go to Step 18.

16. If the current box is the same box xI(2) defined in Step 10, go to Step
18.

17. Use the procedure described in Section 15.4 through 15.6 to try to

reduce the upper bound f.

18. If f (xI) ≤ f, go to Step 20.

19. Apply box consistency to the relation f (x) ≤ f. If the result is empty,
go to Step 3.

20. Repeat Step 4.

21. If xI(1) (as defined in Step 3) has been sufficiently reduced, put xI in
the list L1 and go to Step 3.

22. If f [m(xI)] < f, go to Step 29.

23. If w(xI) >
1

2
(w

f

S + w
f

I), go to Step 27. (See Section 15.11.)

24. Denote the current box by xI(3). Apply the linear method of Section

12.5.3 to try to reduce xI(3) using f (x) ≤ f. Update w
f

S and w
f

I as
described in Section 14.7. If the result is empty, go to Step 3.

25. Repeat Step 4.

26. If xI(3) (as defined in Step 24) was sufficiently reduced (as defined
using (11.7.4)) in the single Step 24, go to Step 30. Otherwise, go to
Step 32.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

27. If w(x) >
1

2
(w

Q
S + w

Q
I), go to Step 30. (See Section 15.11.)

28. Apply the quadratic method of Section 12.5.4 to try to reduce the

current box using f (x) ≤ f. Update w
Q
S and w

Q
I as described in

Section 14.7. If the result is empty, go to Step 3.

29. Repeat Step 4.

30. If xI(1) (as defined in Step 3) has been sufficiently reduced, put xI in
L1 and go to Step 3.

31. If w(xI) >
1

2
(w

q

S + w
q

I), go to Step 43. (See Section 15.11.)

32. If condition (14.6.4) is not satisfied, go to Step 40. Otherwise, do the
following as described in Section 15.9. Replace n−r of the variables
by their interval bounds and find the preconditioning matrix B for the
system involving the remaining r variables.

33. Precondition the linearized system. If the preconditioned coefficient
matrix is regular (see Theorem 5.8.1), find the hull of the linearized
system by the method of Section 5.8. If the matrix is not regular, solve
the system by the Gauss-Seidel method (see Section 5.7). Update w

q

S

and w
q

I as described in Section 14.7. If the result is empty, go to Step
3.

34. Repeat Step 4.

35. The user might wish to bypass analytic preconditioning (see Section
11.9). If so go to Step 40. If analytic preconditioning is to be used,
analytically multiply the nonlinear system of constraint equations
by the matrix B computed in Step 32. Do so without replacing any
variables by their interval bounds (so that appropriate combinations
and cancellations can be made). After the analytic multiplication is
complete, replace the fixed variables (as chosen in Step 32) by their
interval bounds.

36. Repeat Step 4.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

37. Apply hull consistency to solve the i-th nonlinear equation of the
preconditioned nonlinear system for the i-th (renamed) variable for
i = 1, · · · , r . If the result is empty, go to Step 3. If the existence of
a feasible point is proved (see Section 10.12), use the result to update

f (see Section 15.4).

38. Repeat Step 4.

39. Apply box consistency to solve the i-th nonlinear equation of the
preconditioned nonlinear system for the i-th (renamed) variable for
i = 1, · · · , r . If the result is empty, go to Step 3.

40. Repeat Step 4.

41. If w(xI) >
1

2
(wJ

R + wJ
I), go to Step 43. (See Section 15.11.1.) Note

that the vector function used to determine the Jacobian in (11.8.1) is
the gradient of the objective function.

42. Apply one step of the interval Newton method of Section 11.14 for

solving the John conditions (15.2.1). Update wJ
R and wJ

I as described
in Section 14.7, If the result is empty, go to Step 3. If the existence
of a solution of the John conditions is proved as discussed in Section

15.3, then update f (as discussed in Section 15.3).

43. If the box xI(1) (as defined in Step 3) has been sufficiently reduced,
put xI in L1 and go to Step 3.

44. Any previous step that used hull consistency, a Newton step, or a
Gauss-Seidel step might have generated gaps in the interval compo-
nents of xI. Merge any such gaps when possible. Split the box as
described in Section 11.8. This might involve deleting gaps. Place
the subboxes (generated by splitting) in the list L1 and go to Step 3.

45. If the list L2 is empty, print “There is no feasible point in xI(0)” and
go to Step 52.

46. If flag F = 1, go to Step 48. Otherwise, set F = 1.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

47. For each box xI in list L2 do the following. If |qi(xI)| > εq for any
i = 1, · · · , r , put the box in list L1.

48. If any box was put in list L1 in Step 46, go to Step 3.

49. If f < +∞ and there is only one box in L2, go to Step 52.

50. For each box xI in L2, if f [m(xI)] < f, try to prove existence of a
feasible point using the method described in Sections 15.4 through

15.6. Use the results to update f.

51. Delete any box xI from L2 for which f (xI) > f.

52. Denote the remaining boxes by xI(1)
, · · · , xI(s) where s is the number

of boxes remaining. Determine

F = min
1≤i≤s

f (xI(i)) and F = max
1≤i≤s

f (xI(i)).

53. Terminate.

15.13 RESULTS FROM THE ALGORITHM

At termination, if the list L2 is empty, then all of the initial box xI(0) has been

eliminated. This provides proof that the initial box xI(0) does not contain a
feasible point.

Assume that at least one box remains in the list L2. What we have
proved in this case depends on the final value of f. If f < +∞, then we

know that a feasible point exists in the initial box xI(0). If f = +∞, there

might or might not be a feasible point in xI(0).

Consider the case f < +∞. No matter how poor the bound f on f ∗, we

know that a global solution exists in xI(0); and it is in one of the remaining
boxes. Also, we know that

F ≤ f ∗ ≤ F .

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

If only one box xI remains, then it must contain the global solution. In this
case,

f (xI) ≤ f ∗ ≤ min{f (xI), f} and f (xI) − f (xI) ≤ εf .

Therefore,

f (x) − f ∗ ≤ εf

for every point x in the box. Also,

x∗
i − Xi ≤ εX and Xi − x∗

i ≤ εX (i = 1, · · · , n).

If more than one box remains, it is possible that one contains a local

solution at which f is less than our upper bound f. Also, there might be
more than one global solution occurring in separate boxes. We know only
that

F ≤ f ∗ ≤ min{f, F }

and that the global minimum point(s) are in the remaining boxes.

If the final value of f is ∞ and xI(0) is not entirely deleted, then xI(0)

might or might not contain a feasible point. We do not know. It is highly

probable that a solution exists since, otherwise, we expect all of xI(0) to be

deleted. However, we do know that if a feasible point does exist in xI(0),
then,

F ≤ f ∗ ≤ F

and x∗ is somewhere in the remaining box(es). All local solutions in the
initial box are contained in the final solution box(es).

It is possible that every point in the initial box xI(0) is infeasible. How-

ever, our algorithm can delete all of xI(0) (and thus prove there is no solution)

only if every point in xI(0) is proved to be feasible (i.e., is certainly infeasi-

ble). Even if every point in xI(0) is certainly infeasible, our algorithm can

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

still fail to delete all of xI(0). This is because it operates on boxes rather
than points and this generally introduces dependence. The probability of
deleting the entire box in this case is greater when the box size tolerance
εX is smaller.

Thus, we might prove there is no feasible point in xI(0), but we do not
guarantee doing so when this is, in fact, the case.

Regardless of what procedure is used to delete a part of xI(0), we know
that the deleted part cannot contain a solution.

A user might want a single feasible point x̃ such that

||̃x − x∗|| ≤ ε1 (15.13.1)

and/or

f (̃x) − f ∗ ≤ ε2 (15.13.2)

for some ε1 and ε2. Recall that x∗ is a (feasible) point such that f (x∗) = f ∗
is the globally minimum value of the objective function f .

Generally, no algorithm can assure that a single point is certainly feasi-
ble because of rounding errors in evaluating the equality constraints. There-
fore, we cannot provide a point x̃ that is guaranteed to be feasible. In Section
15.3, we described how we could prove that some (unknown) feasible point
exists in a given box. However, we can assure that for a given point x̃ the
equality constraints satisfy

|qi (̃x)| ≤ εq (15.13.3)

for some εq > 0 and all i = 1, · · · , r. In the algorithm, we attempt to assure
this by requiring that

|qi(xI)| ≤ εq (i = 1, · · · , r) (15.13.4)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

for an entire box xI. See Step 4 of the algorithm in Section 15.12. See,
also, Steps 12, 20, 25, 29, 34, 38, 40, and 41.

Note that rather than simply testing whether (14.9.4) is true, we should
apply hull consistency to the inequalities as discussed in Section 10.10.
This might reduce the box xI being tested.

In Section 15.10, we noted that a condition such as (15.13.4) should
not be used to delete points. However, it can be used as a condition for
convergence.

In our algorithm in Section 15.12, we assure that (15.13.1), (15.13.2),
and (15.13.3) are all satisfied. However, we do not impose condition
(15.13.4) until near the end of the algorithm. This is because it requires
more work to apply than (15.13.1) and (15.13.2).

We now distinguish the following cases.

Case 1. There is only one final box xI and f < +∞.

Since f < +∞, we know that a feasible point exists in the initial box.
Since x∗ is never deleted by the algorithm, it must be in the single remaining
box xI. We can choose x̃ to be any point in xI. Then the stopping criteria of
the algorithm assure that

||̃x − x∗|| ≤ εX,

f (̃x) − f ∗ ≤ εf , and

|qi (̃x)| ≤ εq (i = 1, · · · , r) .

Case 2. There is more than one final box and f < +∞.

Since f < +∞, we know that a feasible point exists in at least one of
the final boxes; but we do not know which one(s). All or part of the box
in which we proved the existence of a feasible point and obtained the final

value of f might have been deleted. A given point in a final box might be far
from x∗ because x∗ is in another box. However, any such point x̃ satisfies
|qi (̃x)| ≤ εq (i = 1, · · · , r) so it must be “almost feasible”. Suppose we
pick x̃ to be an arbitrary point in an arbitrary final box. From Step 53 of
the algorithm, we have F ≤ f (̃x) ≤ F.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Case 3. f = +∞.

In this case, we do not know if there is any feasible point in the initial
box in which the algorithm began its search. However, if there is, then
Case 1 or Case 2 apply.

15.14 DISCUSSION OF THE ALGORITHM

A given problem will often have several or many equality constraints
qi(x) = 0 (i = 1, · · · , r). In our algorithm, we assure that

|qi(xI)| ≤ εq (i = 1, · · · , r) (15.14.1)

for every final box xI .
We do not check that this condition is satisfied until near the end of the

algorithm. We first assure that

w(xI) ≤ εX and w
(
f (xI)

) ≤ εf , (15.14.2)

for every remaining box. We do so because it generally takes much less
computing to check these condition than to check (15.14.1).

Checking is done in Step 4 (which is repeated in Steps 12, 20, 25, 29,
34, 38, 40, and 41). To check (15.14.2), we do Step 4a. When we check
(15.13.4) in Step 4b, (15.14.2) is already satisfied (as verified using flag
F); so it is not necessary to check it again.

In Step 42, we complete the Newton step only if the preconditioned co-
efficient matrix is regular. To do so requires bounds on the Lagrange mul-
tipliers. We do not have such bounds if the linear normalization (13.2.2a)
is used. If (13.2.2b) is used, instead, we can complete the Newton step by
using Gauss-Seidel to “solve” the preconditioned equations. This might or
might not improve the bounds on the solution.

For a point x to be a solution of the optimization problem (15.1.1), each
equality constraint must be zero at x. Our algorithm assures the computed
(perhaps non-sharp) value of qi(xI) contains zero for all i = 1, · · · , r and
for each remaining box xI. A user might want to assure that |qi(xI)| < εq

(i = 1, · · · , r) for some εq > 0. Note that when we apply hull consistency

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

(see Step 5 of the algorithm) to the constraints, we have the data necessary
to evaluate qi(xI) for the box xI in use at that time. These data are used to
assure that |qi(xI)| < εq with almost no extra computing.

The evaluation of m(xI) and f
(
m(xI)

)
used in Steps 7, 10, 12, 15, 18,

and 22 can be done in real arithmetic. Only an approximate value is needed.

Consider a function F that can be either the objective function f or a
constraint function qi (i = 1, · · · , r). When we apply hull consistency to
such a function, we express it as F(x) = g(xj) − h(x) and solve for xj

for some j = 1, · · · , n. If h(x) is independent of xj then box consistency
cannot improve on the bound for xj computed using hull consistency. When
applying box consistency, we solve a given function F for a given variable
xj only if h(x) is a function of xj .

Our overall strategy is to use those procedures first that require the least
computing. We continue to use the simplest procedures as long as they
make adequate progress. Thus, solving the John conditions is done only as
a last resort because it requires more computing than the other procedures.
In practice, this step might not be needed at all to solve some problems.

We prefer not to use Taylor expansions until the current box is suffi-
ciently small that this form yields sharper bounds on the range of a function
than direct evaluation. See Section 15.11. This is why we included Steps
23, 27, 31, and 41.

We use procedures that require expansions only when hull consistency
and box consistency do not make sufficient progress. This implies that hull
consistency is relied upon when a box is large. Therefore, hull consistency
should be implemented to be efficient at reducing large boxes.

We use expansions when trying to prove existence of a feasible point.
See Steps 10 and 17. However, we have designed the procedure for proving
existence so that it generates a small box in which expansions are likely
to be useful. See Section 15.4.1. Therefore, we never bypass the effort to
prove existence of a feasible point.

Choosing which box xI from the list L1 to process can be done in many
ways. Experience has shown that choosing the box for which f (xI) is least
is better than choosing the smallest box or basing the choice on “age”. See
Step 3. When a box is reduced, the value of f (xI) can change. Therefore,

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

whenever a box has been sufficiently reduced, we check to see if it is still
the one with smallest f (xI).

It is helpful to have as small a value of f as possible. However, the work
required to try to determine bounds on a feasible point is not trivial; and it

might be wasted. Therefore, we try to reduce f only if f [m(xI)] < f. See
Steps 10 and 15. This condition indicates the existence of point(s) x ∈ xI

where f (x) < f independent of their feasibility.

The nearer the upper bound f is to the minimum f ∗, the more infor-
mation we get about the solution. See the comments in Section 15.10.

Therefore, near the end of the algorithm, we make a last effort to reduce f.
See Step 49. This procedure might have already been applied to some or all
of the boxes in list L2. If so, the process should not be repeated. However,
if a feasible point is not found in such a box, the procedure for proving
existence of a feasible point can be modified. For example, the choice of
variables to fix can be altered. See Section 15.5.

Applying hull consistency to the constraint equations can eliminate
many infeasible points. Therefore, we apply it before trying to find a
feasible point. We could also apply box consistency before trying to find
a feasible point. However, box consistency performs a function much like

that of hull consistency (with more computing). We try to reduce f to a
finite value before applying box consistency to the constraints. If we do so,

we can apply hull consistency to the relation f
(
xI
) ≤ f before applying

the more work intensive box consistency to any relations.
Suppose we apply a Newton step to the John conditions and succeed in

computing a solution (because the preconditioned coefficient matrix is reg-
ular). Then we obtain bounds on the Lagrange multipliers. The midpoints
of these interval bounds are used as estimates for Lagrange multiplier val-
ues in successive attempts to solve the John conditions. These estimates
are saved for use when the Newton step is applied to a subbox of the one
for which the bounds were computed. Such estimates can be used even if
the current box is not a subbox of one for which estimates were originally
computed.

The splitting procedure called in Step 41 uses a measure of change in
the gradient of the objective function to determine how to split a box. The

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

change in the gradient is not directly significant in an equality constrained
problem as it is a change in the function in Section 11.8. Nevertheless, it
is a useful measure in splitting.

15.15 NONDIFFERENTIABLE FUNCTIONS

So far in this chapter, we have assumed that the objective function and the
equality constraint functions are twice continuously differentiable. We now
consider how the algorithm in Section 15.12 must be altered when these
assumptions do not hold.

If the constraints are not continuously differentiable, then Steps 10 and
17 of the algorithm in Section 15.12 cannot be used. That is, we cannot
guarantee the existence of a feasible point as discussed in Section 15.3 and
15.4.1.

An alternative might be to assume a point x is feasible if all the con-
straints are satisfied to within some error tolerance. We discussed this
possibility in Section 15.10. This would not produce guaranteed bounds
on the solution. If the constraints are continuous, it is possible to prove
existence of a feasible point using hull consistency as discussed in Sec-
tion 15.4.2. If hull consistency is used for this purpose, the quadratically
converging implementation should be applied in Step 39.

If the objective function is not twice continuously differentiable, we
cannot apply a Newton method to solve the John conditions. Therefore,
Step 44 of the algorithm cannot be used.

Dropping procedures such as Newton’s method that require differentia-
bility degrades the performance of the algorithm. However, the algorithm
solves the optimization problem even when continuity is lacking. Hull
consistency provides the means.

Some nondifferentiable functions can be replaced by differentiable
functions (plus constraints). See Chapter 18. This can resolve the diffi-
culty and facilitate proving existence of a feasible point.

It is always better to use expansions in slopes rather than derivatives
because slopes produce sharper bounds. We noted in Section 7.11 that
some nondifferentiable functions have slope expansions. This can obviate
concerns regarding differentiability.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 16

THE FULL MONTY

16.1 INTRODUCTION

We discuss inequality and equality constrained optimization separately in
Chapters 14 and 15. Separating the cases was done for pedagogical rea-
sons. In this chapter, we discuss the case in which there are both inequality
and equality constraints. We give an algorithm for this case is Section
16.4. Before doing so, we consider some modifications to some previously
discussed algorithms. In Section 16.2, we discuss solving linear systems
with interval coefficients in which some of the relations of the system are
inequalities and some are equalities. In Section 16.3, we discuss an ex-
tension of the procedure in Section 15.4.1 for proving the existence of a
feasible point in a given box.

16.2 LINEAR SYSTEMSWITH BOTH INEQUALITIESAND
EQUATIONS

In Chapter 6, we described a method for solving linear systems of inequal-
ities with interval coefficients. We now consider how this procedure can be
extended to include equalities (or equations) as well as inequalities.

Recall that to perform a step of Gaussian elimination for the case of
inequalities, the multiplier must be positive so as not to change the sense
of the inequality. For equalities, this is not the case. If we use an equation

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

as the pivotal row of the system, we can eliminate a coefficient of either
an equation or of an inequality using a multiplier that is either positive or
negative.

As in Chapter 6, the first phase in solving the system involves finding a
preconditioning matrix. This entails elimination for the noninterval case.

Suppose there are r equalities and m inequalities in n unknowns with
r + m ≤ n. Let us write the system in matrix form in which the equalities
occur first and the inequalities last. We then have a system of the form

AIz = uI (16.2.1a)

BIz ≤ vI (16.2.1b)

where AI is r by n and BI is m by n. Because the linear system is generally
a linearized version of a nonlinear system, the vector z will generally be of
the form z = y − x where x is fixed and y is sought as the solution vector.

Since the inequalities can be of little help in solving the equalities,
we precondition and solve the system of interval equalities first. We do
so using the procedure in Section 15.9. If the procedure for solving the
equalities reduces the box sufficiently (as determined using (11.7.4)), it can
be repeated before solving the inequalities.

We now list the steps used to solve the combined system of relations.
We describe the procedure as if the equalities and inequalities are solved
simultaneously instead of one after the other. This simplifies the discussion
of how the equalities are used to aid in solving the inequalities.

1. If the equalities are nonlinear, linearize them to obtain the system in
(16.2.1a).

2. If the inequalities are nonlinear, linearize them to obtain the system

in (16.2.1b). Denote RI =
(

AI

BI

)

3. Compute the approximate center Rc of RI.

4. Apply Gaussian elimination with both row and column pivoting to
Rc to produce zeros in columns 1, · · · , r except for elements in po-
sitions (i, j) with i = j . Select pivot elements from row 1, · · · , r

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

and columns 1, · · · , n. To simplify the discussion, assume that no
column interchanges are needed. Do the first stage of generating
a preconditioning matrix by doing the same elimination steps to an
identity matrix of order n.

5. Apply Gaussian elimination as described in Section 6.3 through 6.6.
to produce zeros (where possible using positive multipliers) in rows
and columns r +1, · · · , r +m except for elements in positions (i, j)

for i = j. Generate secondary pivot rows as described in Section
6.5. Denote the number of secondary pivot rows generated by m′.
Select pivots from rows r +1, · · · , r +m and columns r +1, · · · , n.
To simplify the discussion,assume that no column interchanges are
required. Complete the generation of the preconditioning matrix
begun in Step 4. Denote the final preconditioning matrix by P.

6. Replace zr+1, · · · , zn by their interval bounds. Note that if column
interchanges were made in Step 4 or Step 5, different variables are
replaced by their interval bounds.

7. Precondition the interval system by multiplying by P to obtain
PRIz = PwI. Apply an interval version of Gaussian elimination
to this system without either row or column pivoting to zero the el-
ements in positions (i, j) with i = m + 1, · · · , m + m′ and j =
r + 1, · · · , r + m.

8. Solve the m preconditioned equalities as follows

(a) Replace variables zm+1, · · · , zm+r by their interval bounds.

(b) Solve the resulting m equalities in m variables by the hull
method of Section 5.8. If the hull method fails, use the Gauss-
Seidel method of Section 5.7.

9. Solve the m+m′ interval inequalities (which involve n−m variables)
by the method of Section 6.8.

In practice, we should solve the equalities before even linearizing the
inequalities in Step 2. This produces narrower interval coefficients in the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

linearized inequalities. This approach requires that we save the linear op-
eration used in Step 4 and 7 for use in eliminating variables from the linear
inequalities. We omit the somewhat messy details.

When solving a system of nonlinear equalities and inequalities, we use
the procedure described in this section only if the width of the current
box satisfies a “linearization condition” as described in Section 14.7 and
discussed in Section 15.11. We use parameters wC

I and wC
R defined and

used similarly to w
g
I and w

g
R in Section 14.7.

16.3 EXISTENCE OF A FEASIBLE POINT

When solving a global optimization problem, an upper bound on the global
minimum can be used to eliminate local minima of value larger than the
upper bound. In Section 15.4.1, we discuss the problem of proving the
existence of a feasible point for the equality constrained problem. It is nec-
essary to prove existence to obtain an upper bound on the global minimum.
We seek to prove existence by applying a Newton method to the constraint
equalities over a box xI. If a Newton step applied to xI produces a new
box xI′ that is contained in xI, this proves that a feasible point exists in xI′.
See Theorem 11.15.7. Therefore, f (xI′) is an upper bound on the global
minimum of f .

When inequality constraints also occur, we must prove that the solution
point also satisfies the inequalities. When there are equality constraints,
we generally do not know a single point that satisfies them. We only know
that the point proven to exist by the Newton method lies in a box xI′. We
must verify that the inequality constraints are satisfied over the entire box
xI′. When there are no equality constraints, this verification can be done at
a single point. See Section 14.3.

Sometimes it is possible to determine some or all of the components of
a point that satisfies the equality constraints. This is done by fixing one or
more of the variables and solving for others. We gave an example in Section
15.5. We now consider three cases. In the first case all of the variables can
be determined by fixing a subset of them. In the second case, some, but

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

not all, of the variables can be determined in this way. In the third case, no
variables can be determined in this way.

Assume that we are solving the optimization problem in a given box

xI(0) and denote the current subbox of interest by xI.

16.3.1 Case 1

Assume that we fix a number k of the variables and are able to determine
all of the others from the equality constraints. To do so, we choose these k

variables to have their values at the center of xI. This serves to determine a
partially prescribed and partially computed point x̃. However, it might be
necessary to make rounding errors in computing the unprescribed variables
so, in practice, the “point” might have interval components. To emphasize
this fact, we denote it by x̃I. If x̃I satisfies the inequality constraints, then
any point x̃ ∈ x̃I is a feasible point. Therefore, f (x̃I) is an upper bound on
the global minimum f ∗.

Note that x̃I might not be in the current box xI. We consider this to
be irrelevant. We are searching for any point that gives a good upper
bound on the global minimum. The current box merely serves to begin the

determination of x̃I. Note also that x̃I might not be in the initial box x̃I(0)
. If

not, we temporarily abandon our effort to prove the existence of a feasible
point. When the main program chooses a new box, we try again.

16.3.2 Case 2

We now consider the case in which we fix a number k of the variables and
determine some, but not all, of the others so that a number s < n of the
variables is either prescribed or computed. For simplicity, assume they
are the first s components. Thus, we know the components X1, · · · , Xs

of some “point”. The computed components might be intervals (to bound
rounding errors) so we denote (all of) them as intervals with capital letters.

If Xi � X
(0)
i for some i = 1, · · · , s, we abandon our effort to bound a

feasible point when starting from the current box. It might happen that no
point with components X1, · · · , Xs intersects the current box. We consider
this to be irrelevant.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Note that after fixing certain variables and solving for others, a subset
of the equality constraints is satisfied. Our effort to prove existence of a
feasible point now involves fewer variables and fewer equality constraints
than originally occurred. We substitute the values of the fixed variables
into the remaining constraints. We then use these constraints to try to prove
existence of a point that satisfies them. We use the procedure in Sections
15.4 through 15.6. Some of the variables are fixed as just described. The
procedure in Section 15.5 fixes others.

The procedure in Section 15.4.1 generates a box in which to try to
prove existence. We choose this box so that its unfixed components have
the same relative widths as the current box xI. This is reasonable because
the widths of the components of the current box more likely to reflect the
relative scaling of variables in the problem than an arbitrarily chosen box.

Assume the Newton step discussed in Section 15.4 proves existence of a
point satisfying the equality constraints in a box xI′. If this box satisfies the
inequality constraints, thenf (xI′) is an upper bound on the global minimum.
If the box does not satisfy the inequality constraints, we abandon our effort
to bound a feasible point when starting from the current box.

16.3.3 Case 3

In our final case, no variables are fixed and no equality constraints are
satisfied before we try to prove existence of a feasible point. Now we
reverse the order in which the equality and inequality constraints are used.
It is generally easier to check whether the inequality constraints are satisfied
than to try to prove existence of a point satisfying the equality constraints.
Therefore, we first find a point satisfying the inequality constraints; and
try to prove existence of a point satisfying the equality constraints in a
box centered at this point. If there are few equality constraints and many
inequality constraints, it might be more economical to reverse the order as
in the two previous cases. We shall not do so.

When the main program generates a new box, we do a line search pro-
ceeding from the center of the box in the direction of the negative gradient
of the objective function as described in Section 14.4. The purpose of the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

line search is to find a point in the box satisfying the inequality constraints
where the objective function is smaller than at the center of the box.

We generate a new box with this point as center but otherwise as de-
scribed in Section 15.4.1. We require that the box be in the initial box

xI(0)
. Therefore, the center of the box (which is the point found by the line

search) must be an interior point of xI(0)
. When the algorithm in Section

14.4 succeeds in finding a point satisfying the inequality constraints, the
algorithm denotes it by y. It also obtains a point, which it denotes by y′,
which might or might not satisfy the inequality constraints. If y is on the

boundary of xI(0), then y′ is not. In this case, y′ can be chosen as the center
of the box to be generated if y′ satisfies the inequality constraints.

We ignore the fact that the objective function is smaller at y than at y′. If
y′ does not satisfy the inequality constraints, the algorithm in Section 14.4,

can be continued to obtain an interior point of xI(0) satisfying the inequality

constraints. If no such point in the interior of xI(0) is found after a few steps,
the procedure to prove existence of a feasible point when starting from xI

can be abandoned.
Let y denote the point that the line search finds and that satisfies the

inequality constraints. We assume the line search has been modified as just

described so that y is an interior point of xI(0)
. We now do the following

steps. In these steps, the box zI changes from step to step.

1. Generate a box zI with center y having the same relative widths of
components as the current box xI.Choose zI to have width 1

2 (w
q

R+w
q

I)

where w
q

R and w
q

I are defined in Section 15.4.1.

2. If zI extends beyond the boundaries of the initial box xI(0), shrink it

as described in Section 15.4.1 until it is contained in xI(0)
.

3. If zI satisfies the inequality constraints, go to Step 8.

4. Set n = 0.

5. Replace n by n + 1. Shrink zI by a factor of eight.

6. If zI satisfies the inequality constraints, go to Step 8.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

7. If n < 8, go to Step 5. Otherwise, abandon the effort to try to find a
feasible point.

8. Use the procedure in Sections 15.4 through 15.6 to try to prove that
there exists a point in zI that satisfies the equality constraints.

Note that, for a given problem, it might not be possible to find a non-
degenerate box that satisfies the inequality constraints. For example, there
might be only a single point satisfying them. In Section 14.9, we discuss
how to treat this situation when there are no equality constraints. We treat
a subset of the inequality constraints as equalities. In the current case, we
simply add the equality constraints to the set of inequality constraints that
are treated as equalities. We then try to prove existence of the combined set
of equalities using the procedure discussed in Sections 15.4 through 15.6.

16.4 THE ALGORITHM STEPS

We now give the steps of the algorithm for the case in which both inequality
and equality constraints occur.

To initialize, we require that the user specify a box size tolerance εX, a
function width tolerance εf , an inequality function width tolerance εp, an
equality function width tolerance εq , and the initial box(es). Any tolerance
not specified is set to +∞ by the program. However, a finite value must
be specified for at least one of them. The initial box(es) are put in list L1.

The algorithm provides the parameters needed to perform any linearization

test. (See Section 14.7.) It sets w
f

S , wS
S , wC

S , w
q

R and wJ
R to zero and sets

w
f

I , wS
I , wC

I , w
q

I and wJ
I equal to w(xI(0)

). It also sets the flag F = 0.
The steps of the algorithm are to be performed in the order given except

as indicated by branching. The current box is denoted by xI throughout the
algorithm even though it changes from step to step.

1. For each initial box xI in the list L1, evaluate f (xI). Denote the result
by [f (xI), f (xI)].

2. If f < +∞, delete any box xI from L1 for which f (xI) > f .

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

3. If L1 is empty, go to Step 47. Otherwise, find the box in L1 for which

f (xI) is smallest. For later reference, call this box xI(1)
. This box is

processed next by the algorithm. Delete xI(1) from L1.

4. If flag F = 0, go to Step 4a. If flag F = 1, go to Step 4b.

(a) If w(xI) ≤ εX and w[f (xI)] ≤ εf , put xI in list L2 and go
to Step 3. Otherwise, go to the next step. Note that Step 4 is
repeated elsewhere in the algorithm. If it is called in Step k,
then “next step” refers to Step k + 1. For example, when it is
actually called as Step 4, the next step is Step 5; but when it is
called in Step 14, for example, the next step is Step 15.

(b) If |pi(xI)| ≤ εp for all i = 1, · · · , m and |qi(xI)| ≤ εq for all
i = 1, · · · , r , put xI in list L2 and go to Step 3.

5. Apply hull consistency to the constraint equalities qi(x) = 0 for
i = 1, · · · , r . If it is proved that no point in xI satisfies any one of
the constraints, go to Step 3.

6. Apply hull consistency to the constraint inequalities pi(x) ≤ 0 for
i = 1, · · · , m. If it is proved that no point in xI satisfies any one of
the constraints, go to Step 3.

7. Repeat Step 4.

8. If xI(1) (as defined in Step 3) has been sufficiently reduced (as defined
using (11.7.4)), put xI in list L1 and go to Step 3.

9. Compute an approximation x for the center of xI and an approxima-
tion for f (x).

10. If f (x) ≥ f , go to Step 13.

11. For later reference, call the current box xI(2)
. Use the procedure de-

scribed in Section 16.3 to try to reduce the upper bound f . Note:
The box xI could be the same one used the last time this step was
used. If so, do not repeat the procedure.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

12. Compute an approximate center x of xI and an approximate value of
f (x). If f (x) ≤ f , go to Step 14.

13. Apply hull consistency (see Chapter 10) to the relation f (x) ≤ f . If
the result is empty, go to Step 3.

14. Repeat Step 4.

15. If xI(1) (as defined in Step 3) has been sufficiently reduced (as defined
using (11.7.4)), put xI in list L1 and go to Step 3.

16. Apply box consistency to the equality constraints qi(x) = 0 for i =
1, · · · , r and then to the inequality constraint pi(x) ≤ 0 for i =
1, · · · , m. If it is proved that no point in xI satisfies any one of the
constraints, go to Step 3.

17. Compute an approximate center x of xI and an approximate value of
f (x). If f (x) ≥ f , go to Step 20.

18. If the current box is the same box xI(2) defined in Step 11, go to Step
20.

19. Use the procedure described in Section 16.3 to try to reduce the upper
bound f .

20. If f [m(xI)] ≤ f , go to Step 22.

21. Apply box consistency to the relation f (x) ≤ f . If the result is empty,
go to Step 3.

22. Repeat Step 4.

23. If xI(1) (as defined in Step 3) has been sufficiently reduced, put xI in
the list L1 and go to Step 3.

24. Compute an approximate center x of xI and an approximate value of
f (x). If f (x) < f , go to Step 32.

25. If w(xI) > 1
2 (w

f

S + w
f

I), go to Step 29. (See Section 15.11).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

26. For later reference, denote the current box by xI(3). Apply the linear

method of Section 12.5.3 to try to reduce xI(3) using f (x) ≤ f .

Update w
f

S and w
f

I . If the result is empty, go to Step 3.

27. Repeat Step 4.

28. If xI(3) (defined in Step 26) was sufficiently reduced (as defined using
11.7.4), in the single Step 26, go to Step 32. Otherwise, go to Step
33.

29. If w(xI) > 1
2 (wS

S + wS
I), go to Step 33. See Section 14.7.

30. Apply the quadratic method of Section 12.5.4 to try to reduce the
current box using f (x) ≤ f . Update wS

S and wS
I . If the result is

empty, go to Step 3.

31. Repeat Step 4.

32. If xI(1) (as defined in Step 3) has been sufficiently reduced (as defined
using (11.7.4)), put xI in L1 and go to Step 3.

33. If w(xI) > 1
2 (wC

S + wC
I), go to Step 42. (See Section 15.11.)

34. Linearize and solve the system of equality constraints as described
in Section 16.2.

35. Linearize those inequality constraints that satisfy (14.6.2). If (14.6.2)
is satisfied, include the inequality f (x) ≤ f . Solve them by the
method of Section 16.2, which also uses the equality constraints.
Update wC

S and wC
I as described in Section 16.2.

36. Repeat Step 4.

37. The user might wish to bypass analytic preconditioning (see Section
11.9). If so, go to Step 42. If analytic preconditioning is to be used,
analytically multiply the nonlinear system of equality and inequal-
ity constraints by the preconditioning matrix described in Section
16.2 and computed in the combined Steps 34 and 35. Do so without

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

replacing any variables by their interval bounds so that appropriate
combinations and cancellations can be made. After the analytic pre-
conditioning is complete, replace variables by their interval bounds
as in Steps 34 and 35.

38. Apply hull consistency to the relations derived in Step 37. Solve
the equalities only for the variables that were solved for in Step 34.
Solve the inequalities only for the variables that were solved for in
Step 35. If the result is empty, go to Step 3.

39. Repeat Step 4.

40. Apply box consistency to the relations derived in Step 37. Solve the
equalities only for the variables that were solve for in Step 34. Solve
the inequalities only for the variables that were solved for in Step 35.
If the result is empty, go to Step 3.

41. Repeat Step 4.

42. If w(xI) > 1
2 (wJ

R +wJ
I), go to Step 45, (where wJ

R and wJ
I are defined

as in Section 14.7 (see 14.7.1)).

43. Apply one step of the interval Newton method of Section 11.14 for
solving the John conditions (13.5.1). Update wJ

R and wJ
I . If the

result is empty, go to Step 3. If the existence of a solution of the John
conditions is proved as discussed in Section 15.3, then update f (as
discussed in Section 15.3).

44. If xI(1) (as defined in Step 3) has been sufficiently reduced, put xI in
L1 and go to Step 3.

45. Any previous step that used hull consistency, a Newton step, or a
Gauss-Seidel step might have generated gaps in the interval compo-
nents of xI. Merge any such gaps when possible. Split the box as
described in Section 11.8. This might involve deleting gaps. Place
the subboxes (generated by splitting) in the list L1 and go to Step 3.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

46. If the list L2 is empty, print “There is no feasible point in xI(0)" and
go to Step 54.

47. If flag F = 1, go to Step 50. Otherwise, set F = 1.

48. For each box xI in list L2 do the following. If p(xI) > εp for any
i = 1, · · · , m or if |qi(xI)| > εq for any i = 1, · · · , r , put the box in
list L1.

49. If any box was put in list L1 in Step 48, go to Step 3.

50. If f < +∞ and there is only one box in L2, go to Step 54.

51. For each box xI in L2, if f [m(xI)] < +∞, try to prove existence of
a feasible point using the method describe in Section 16.3. Use the
results to update f .

52. Delete any box xI from L2 for which f (xI) > f .

53. Denote the boxes in L2 by xI(1)
, · · · , xI(s). where s is the number of

boxes in L2. Determine

F = min
1≤i≤s

f (xI(i)) and F = max
1≤i≤s

f (xI(i)).

54. Terminate.

What we learn about the solution to a problem depends on whether or
not we obtain an upper bound on the global minimum using the procedure
in Section 16.3. It also depends on whether the output of the algorithm is
one box or more than one box. What we learn for a problem with both
equality and inequality constraints is essentially the same as for a problem
with equality constraints only. Thus, the comments following the algorithm
in Section 15.12 are appropriate for the algorithm of this section. There is
no need repeat them.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 17

PERTURBED PROBLEMS
AND SENSITIVITY
ANALYSIS

17.1 INTRODUCTION

In practice, optimization problems often involve parameters that are uncer-
tain. In other problems, parameters can be known exactly, but it is of interest
to know how much the solution to the problem changes as the parameters
change. In this chapter, we discuss methods for bounding the change in the
solution when parameters vary over intervals.

Perturbed problems arise, for example, when the parameters are mea-
sured quantities and the measurements are subject to error. For such prob-
lems, we assume bounds on the errors are known. That is, we assume
intervals are known that contain the values of the parameters.

Small errors in data also occur because of roundoff. For example,
the number π cannot be represented exactly. Instead we represent it by
an interval containing its correct value and whose endpoints are machine
numbers. Such small errors do not require the methods of this chapter.

In this chapter, we consider perturbed problems in which parameters are
specified as intervals. The intervals can be bounds on uncertain parameters
or the range over which a sensitivity analysis is desired. We discuss how the

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

interval optimization algorithms discussed earlier can be used to compute
bounds on the set of solutions that result when the parameters vary over the
given intervals.

For other discussions of the use of interval analysis for perturbed prob-
lems and sensitivity analysis in optimization, see Dinkel and Tretter (1987),
Dinkel, Tretter and Wong (1988), Hansen (1984), and Ratschek and Rokne
(1988).

In noninterval algorithms, a sensitivity analysis might be done by lin-
earizing about a nominal solution. The resulting approximation to the
problem can be poor if large changes in the parameters are allowed. It can
also be poor if small changes in a parameter produce large changes in the
solution. Moreover, the cost of linearization is added in the form of both
extra analysis and extra computing.

Our interval approach is different. To perform a sensitivity analysis,
we replace parameters by intervals over which the parameters are chosen
to vary. We then solve the problem in the same way as discussed in earlier
chapters without changing the algorithms.

In Section 17.5, we show how to compute bounds on the set of solu-
tion values and solution points by solving modified problems. Some extra
analysis of a simple kind is required, but no additional algorithm is needed
to compute the bounds.

Consider an unperturbed problem in which the objective function and/or
constraints depend on a vector c of parameters that are independent of the
variable x. To emphasize the dependence on c, we write the problem as

minimize (globally) f (x, c) (17.1.1)

subject to

{
pi(x, c) ≤ 0 (i = 1, ..., m)

qi(x, c) = 0 (i = 1, ..., r).

To exhibit dependence of the solution on c, we write the solution value
as f ∗(c) and the solution point(s) as x∗(c). Note that f (x∗(c), c) = f ∗(c).

In the perturbed case, we allow c to vary over an interval vector cI. As
c varies over cI, we obtain a set of solution values

f ∗(cI) = {f ∗(c) : c ∈ cI} (17.1.2)

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

and a set of solution points

x∗(cI) = {x∗(c) : c ∈ cI}. (17.1.3)

We wish to bound f ∗(cI) and x∗(cI). The width of the interval f ∗(cI)

is a measure of the sensitivity of the problem to variation of c over cI.
The solution set x∗(cI) contains the global minimum for every specific

(real) choice of the parameters c satisfying the interval bounds c ∈ cI. The
size of the set is a measure of the sensitivity of the solution point to variation
of the parameters within their interval bounds. Therefore, either or both of
f ∗(cI) and x∗(cI) are of interest in sensitivity analysis.

If the intervals bounding the parameters are narrow, and if the problem
is not especially sensitive to perturbation, the solution set x∗(cI) is small.
Therefore, it can be covered by a small number of boxes whose width is
less than the tolerance εX used in a termination process.

As we point out in the next section, the optimization algorithms given in
previous chapters all solve perturbed problems. They produce a box or set
of boxes containing the solution whether it is a single point or an extended
set.

If the perturbations are large, it can require many boxes to cover the
solution set, especially if the box size tolerance is small. In this case, the
number of boxes (and the computing time) can be excessive.

In low dimensional problems, we might want to cover the solution set
by small “pixel” boxes to obtain a kind of map of the solution region. In
fact, we might want to subdivide the intervals containing the parameter to
sharpen the “map” of the region. The “pixel” size of the covering boxes
can be determined by specifying the box size tolerance εX appropriately.
Dependence resulting from multiple occurrences of a parameter can cause
loss of sharpness in defining the boundary of the solution set. In this case,
it can be desirable to split the parameter interval into small subintervals
and repeatedly solve the optimization problem using each subinterval of
the parameter.

However, a primary purpose of this chapter is to show how we can
bound the solution set without covering it by a large number of small boxes.
Instead, we compute a single box bounding the solution set x∗(cI). In

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

addition, we bound the interval f ∗(cI). See Section 17.5. The procedure is
the same as the one described by Hansen (1991).

Note that the solution set x∗(cI) of a perturbed problem is generally
complicated in shape. In particular, it is not a box, in general. For example,
see the solution set of the linear algebraic equation, AIx = bI in Figure
5.3.1. In this equation, the coefficient matrix AI and the right hand side
vector bI are interval quantities.

The solution to this system is the same as the solution to the problem
of minimizing the function

f (x) = (AIx − bI)T (AIx − bI).

That is, the solution to this perturbed minimization problem is a complicated
set.

The algorithms in previous chapters produce a set of boxes covering
such a solution set. However, either the solution set itself or the set of boxes
covering it might be inconvenient to work with, in general. If so, a simpler
indication of the sensitivity is the size of the smallest box containing the
solution set.

Thus, we introduce convenience and reduce the effort by computing the
smallest box containing the solution set rather than covering the solution set
with small boxes. In Section 17.5, we describe a procedure for bounding
such a box.

17.2 THE BASIC ALGORITHMS

The global optimization algorithms described in Sections 12.14, 14.8, and
15.12 do all the essential computations in interval arithmetic. It is irrel-
evant (to the algorithms) whether parameters in the problem are intervals
or real numbers that are treated as degenerate intervals. In this sense, all
problems are perturbed problems when solved by an interval algorithm.
This argument was made in detail by Hansen (1984).

For a perturbed problem, we replace each parameter to be perturbed by
an interval that bounds it. The optimization algorithm solves this problem
without being modified an any way.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

17.3 TOLERANCES

For termination, the optimization algorithms require that the width of each
output box be less than a tolerance εX. Also, the width of the range of
the objective function over each box must not be greater than a function
width tolerance εf . The latter tolerance assures that the final bound on the
minimum value of the objective function is in error by no more than εf .

A question of significance is how to choose these tolerances when solv-
ing perturbed problems. If the intervals bounding the parameters are narrow
and the problem is not too sensitive to parameter changes, the solution set is
small and the choice of tolerances can essentially be made as if the problem
is unperturbed. If the tolerances are small and the solution set is large, the
solution set can be covered by a large number of small boxes. Obtaining
such a result can be expensive in computer time and difficult to interpret in
more than a few dimensions.

If the tolerances are too large, the solution set x∗(cI) is poorly defined
and the bounds on the interval f ∗(cI) of solution values are far from sharp.

We do not have a suitable procedure for choosing the tolerances. In
practice, we often use human intervention. When doing so, we choose the
tolerance εf on the objective function be large and let the box size tolerance
εX drive the stopping criteria. We first solve the problem with εX relatively
large. If desired, we then continue the solution process with a smaller value
of εX, depending on how important it is to accurately map the solution set.

When continuing with a smaller tolerance, it is not necessary to start
over with the original box. We simply place the output boxes from the
previous run in the list of boxes to be processed by the algorithm. We then
proceed as if we are starting over. The algorithm does not repeat previous
work.

A suitable stopping procedure can undoubtedly be incorporated in our
algorithm to handle perturbed problems both efficiently and automatically.
We have spent little effort trying to determine how to do so.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

17.4 DISJOINT SOLUTION SETS

As parameter values change, the location of the global minimum can change
discontinuously. This can happen when a local minimum becomes global
while the global minimum becomes local. Examples are given in Sections
17.7 and 17.8.

A virtue of the interval algorithms given in the previous chapters is
that such a case does not affect their behavior. Any point that is a global
solution for any values of the parameters within their bounding intervals is
contained in the solution set. The solution set can be composed of disjoint
subsets.

17.5 SHARP BOUNDS FOR PERTURBED OPTIMIZATION
PROBLEMS

Two difficulties arise in our optimization algorithm when the problem is
perturbed. In this section, we describe these difficulties and then show how
they can be avoided by modifying our definition of a solution.

The first difficulty is that when parameters in the objective function
enter as intervals, dependence (see Section 2.4) can cause loss of sharpness
in a computed value of the objective function. This, in turn, can cause the
computed solution set to be larger than the true solution set.

The second difficulty has already been mentioned. If the box size
tolerance is small, a large number of boxes is generally required to cover
the solution set of a perturbed problem.

Rather than computing many small boxes to cover the solution set, we
can simply compute the smallest box containing it. In this section, we
consider how to compute sharp bounds on such a box. We also consider
how to sharply bound the set of solution values f ∗(cI) defined by (17.1.2).

By modifying the definition of a solution, we are able to replace the
perturbed problem by a set of unperturbed problems. In appropriate cases
(described below), this enables us to solve the modified problem as sharply
as arithmetic precision permits.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We separate the solution procedure into two phases. In the first phase,
we solve the original problem (17.1.1) with the real vector c replaced by
the interval vector cI bounding it.

When doing so, we use relatively large values of the stopping tolerances
εX and εf . As a result, the output is a small number of relatively large boxes
covering the solution set x∗(cI). That is, we do not do the excessive amount
of computing required to cover the solution set by a large number of small
boxes. The price we pay is that the solution set x∗(cI) is poorly defined
because the output boxes contain a relatively large set of points that are not
in x∗(cI). In addition, the interval f ∗(cI) is only loosely bounded.

Let xI′ denote the smallest box containing the set of boxes computed
as output of the first phase. Generally, xI′ is much smaller than the original

box xI(0) over which the problem is to be solved.
In the second phase, we compute sharp bounds on f ∗(cI) and on the

smallest box xI∗(cI) containing x∗(cI). In doing so, we restrict our search
to the box xI′. Since xI′ is relatively small, the search is rapid.

The second phase involves solving separate problems for a lower and
for an upper bound on f ∗(cI). It also involves separate problems for each
lower and each upper bound on each component of x∗(cI). Thus, we solve
2n+2 problems in the second phase if we want all the components of x∗(cI)

and both lower and upper bounds on f ∗(cI).
We now consider that part of the second phase in which we bound

f ∗(cI). A lower bound on the set of values of f ∗ can be obtained by
solving the problem

Minimize
x,c

(globally) f (x, c)

subject to






pi(x, c) ≤ 0 (i = 1, ..., m)

qi(x, c) = 0 (i = 1, ..., r)

c ∈ cI, x ∈ xI′

This problem differs from the original problem (17.1.1) in that the com-
ponents of c have become independent variables. In addition, the constraint
c ∈ cI has been added. The globally minimum value of f for this problem

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

is obviously the desired lower bound on f ∗(cI). Since this new problem is
not a perturbed one, it can be solved as accurately as desired subject only
to rounding error limitations.

As noted earlier, we solve this problem over the box xI′, which crudely
bounds x∗(cI) and is a relatively small box. Also, the box cI is relatively
small in general. Therefore, while the new problem is in higher dimension
than the original one (17.1.1), we can expect it to be quickly solved.

Obtaining an upper bound on f ∗(cI) is a more complicated problem.
We want the global solution to

Maximize
c∈cI

minimum
x∈xI ′ f (x, c) (17.5.1)

subject to

{
pi(x, c) ≤ 0 (i = 1, ..., m),

qi(x, c) = 0 (i = 1, ..., r).

The box xI′ computed in the first phase of our procedure contains the
global solution to problem (17.1.1) for every c ∈ cI. Assume that xI′ does
not also contain a local (i.e., nonglobal) solution of (17.1.1) for any c ∈ cI.

A solution of (17.1.1) satisfies the John conditions φ(t) = 0 where φ(t)
is given by (13.5.1) and

t =



x
u
v





where u and v are vectors of Lagrange multipliers. To emphasize that our
problem now depends on the parameter vector c, we now write the John
conditions as φ(t, c) = 0. We call a point satisfying φ(t, c) = 0 a John
point.

We make use of the following assumption:

Assumption 17.5.1 For any given c ∈ cI, any point in xI′ that is a John
point is a global solution of (17.1.1).

In Section 17.6, we demonstrate how we can show this assumption is
true using cases described therein. As we also demonstrate, Assumption

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

17.5.1 cannot generally be validated if the global solution point changes
discontinuously as c varies over cI.

IfAssumption 17.5.1 is valid, we can compute an upper bound on f ∗(cI)

by solving the following problem:

Maximize
t,c

(globally) f (x, c) (17.5.2)

subject to

{
φ(t, c) = 0
c ∈ cI.

When solving this problem, we restrict the search to points x ∈ xI′.
If Assumption 17.5.1 is not valid, the solution to this problem is for a

John point that is a local (nonglobal) solution. Therefore, the solution to
(17.5.2) yields an unsharp upper bound on f ∗(cI).

When Assumption 17.5.1 is valid, we can formulate unperturbed prob-
lems to compute the smallest box xI∗(cI) containing the solution set of the
perturbed problem. To compute the left endpoint of a component of xI∗

i (c
I)

(i = 1, ..., n) of xI∗(cI), we solve

Minimize
t,c

(globally) xi (17.5.3)

subject to






pi(x, c) ≤ 0 (i = 1, ..., m)

qi(x, c) = 0 (i = 1, ..., r)

φ(t, c) = 0
c ∈ cI.

To compute the right endpoint of xI∗
i (c

I), we solve

Maximize
t,c

(globally) xi (17.5.4)

subject to






pi(x, c) ≤ 0 (i = 1, ..., m)

qi(x, c) = 0 (i = 1, ..., r)

φ(t, c) = 0
c ∈ cI.

The solutions to problems (17.5.3) and (17.5.4) yield lower and upper
bounds on xI∗

i (c
I), respectively. However, if Assumption 17.5.1 is not

valid, these bounds might not be sharp.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Note that to compute both endpoints of components xI∗
i (c

I) for all i =
1, ..., n, we must solve 2n problems. However, each problem is relatively
easy to solve because the search for a solution is restricted to the small
region xI′.

Note, also, that since xI′ is small, it is unlikely that there is a local (non-
global) minimum for the initial problem (17.1.1) in xI′. That is, Assumption
17.5.1 is likely to be valid for most problems in practice. However, we give
examples in Sections 17.7 and 17.8 for which Assumption 17.5.1 is not
valid. In Section 17.6, we show how Assumption 17.5.1 can sometimes be
validated in practice.

When doing a sensitivity analysis of a particular problem, we might not
want to allow all the components of c to vary simultaneously. Instead, we
might wish to perturb various subsets of the components of c. In this case,
we can proceed as follows.

First, choose cI so that it contains all perturbations of all the “interesting”
components of c. Do the first phase of the algorithm as described above.
Let xI′ denote the smallest single box containing the output box(es) of the
first phase.

For each perturbed problem involving subsets of c, the box containing
the perturbed parameters is contained in cI. Hence, the set of output boxes
for each subproblem is contained in xI′. Therefore, for each subproblem,
the search in the first phase can be restricted to xI′. Since xI′ is generally
smaller than the original region of search, this can save a considerable
amount to computing.

17.6 VALIDATING ASSUMPTION 17.5.1

For some problems, we can validate Assumption 17.5.1. In this section, we
show how this can be done. We first note that in certain cases our validation
procedure cannot be successful.

Suppose we solve a given perturbed problem. That is, we replace c by
the box cI and solve the optimization problem using an interval method from
Section 12.14, 14.8, 15.12, or 16.4. Suppose the output boxes from this
phase can be separated into two (or more) subsets S and S ′ that are strictly

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

disjoint. That is, no box in S touches any box in S ′. Then it is possible that,
as c varies over cI, a global minimum jumps discontinuously from a point
in S to a point in S ′ while the point in S becomes a local minimum. In such
a case, the output boxes from the first phase contain John points that are
not global minima for all c ∈ cI.

In the second phase of our algorithm to bound f ∗(cI) and xI∗(cI), we
solve the problems in Section 17.5. In the case we are considering, these
problems do not yield sharp bounds on either f ∗(cI) or xI∗(cI). This remains
true even if the problems are solved separately over each component of the
disjoint sets of boxes that are output in the first phase of our algorithm.

Suppose the output of the first phase is composed of disjoint sets of
boxes. It is quite possible that the John points in all the output boxes
are global minima. Unfortunately, however, there seems to be no way to
determine whether this is the case or whether some of the John points are
local minima.

Therefore, in this case, it seems we must use one of two options, First,
we can use the second phase and accept the fact that the bounds computed
for f ∗(cI) and xI∗(cI) might not be sharp. Second, we can continue with
the first phase using smaller termination tolerances and cover the solution
set of the original problem (17.1.1) by a large number of small boxes.

We now consider the favorable case in which the box(es) computed
in the first phase do not form strictly disjoint subsets. We are sometimes
able to prove that the solutions to the problems in Section 17.5 yield sharp
bounds on f ∗(cI) and xI∗(cI). The proof relies on the following theorem.

Theorem 17.6.1 Let f(x) be a continuously differentiable vector function.
Let J(x) be the Jacobian of f(x). Suppose we evaluate the Jacobian over a
box xI. Assume J(xI) does not contain a singular matrix. Then the equation
f(x) = 0 can have no more than one solution in xI.

Proof. Assume there are two solutions, x and y, of f(x) = 0. From
Section 7.3 or 7.4,

f(y) ∈ f(x) + J(xI)(y − x).

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Let J′ be a matrix in J(xI) such that equality holds in this relation. Since x
and y are zeros of f ,

J′(y − x) = 0.

Since every matrix (including J′) in J(xI) is nonsingular, it follows that
y = x. That is, any zero of f in xI is unique.

We use the following corollary of this theorem.

Corollary 17.6.2 Suppose the function f in Theorem 17.6.1 depends on
a vector c of parameters. Suppose we replace c in f and in J by a box cI

containing c. If J(xI, cI) does not contain a singular matrix, then any zero
of f(x, c) in xI is unique for each c ∈ cI.

Proof. Note that J(xI, c) ∈ J(xI, cI) for any c ∈ cI. Therefore, if
J(xI, cI) does not contain a singular matrix, neither does J(xI, c) for any
c ∈ cI. Hence, Corollary 17.6.2 follows from Theorem 17.6.1.

We now consider how we can prove that J(xI, cI) does not contain a
singular matrix. As when preconditioning a linear system (see Section 5.6),
we multiply J(xI, cI) by an approximate inverse B of its center. We obtain
M(xI, cI) = BJ(xI, cI). If M(xI, cI) does not contain a singular matrix (i.e.,
is regular), then neither does J(xI, cI). Therefore, we can check the validity
of Corollary 17.6.2 by using M(xI, cI) rather than J(xI, cI).

If B and M(xI, cI) are exact, the center of M(xI, cI) is the identity
matrix and the off-diagonal elements are centered about zero. As a result,
M(xI, cI) tends to be diagonally dominant. A simple sufficient test for
regularity of M(xI, cI) is to check for diagonally dominance. A necessary
and sufficient but more computationally intense test is given by Theorem
5.8.1. See Section 5.8.2 for a discussion of how to use Theorem 5.8.1 in
practice.

If M(xI, cI) is regular, then from Corollary 17.6.2, there is at most one
solution of f(xI, cI) = 0 in xI for each c ∈ cI.

We now apply this analysis to the question of whether a John point in
a given box is unique. If so, we are sometimes able to prove that any John
point in a box of interest is a global minimum for some value of c ∈ cI. We

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

are successful if the result of the Newton step is contained in the input box.
See Proposition 11.15.5.

Again let xI′ denote the smallest box containing the output box(es)
from the first phase of our minimization algorithm applied to a perturbed
problem.

Let φ(t, c) denote the John function given by (13.5.1) and discussed in
Section 17.5. Recall that

t =



x
u
v





where u and v are vectors of Lagrange multipliers. The variable t takes the
place of the variable x used when discussing Corollary 17.6.2. Let J(t, c)
denote the Jacobian of f(t, c) as a function of t. We can use this Jacobian
as described above to prove that any John point in xI′ is a global minimum
for some c ∈ cI. Proof is obtained only if the result of the Newton step is
contained in the input box. See Proposition 11.15.5.

Note that a subroutine is available for evaluating the Jacobian (and
multiplying by an approximate inverse of its center) when doing the first
stage of the algorithm in Section 17.5. Therefore, only a small amount of
coding is needed to test the hypothesis of Corollary 17.6.2.

17.7 FIRST NUMERICAL EXAMPLE

In this and the next two section, we discuss examples that illustrate our
method for solving perturbed problems.

As a first example, we consider the unconstrained minimization problem
with objective function

f (x1, x2) = 12x2
1 − 6.3x4

1 + cx6
1 + 6x1x2 + 6x2

2 .

For c = 1, this is (the negative of) the so-called three hump camel function.
See (for example) Dixon and Szegö (1975).

Let the coefficient (i.e., parameter) c vary over the interval [0.9, 1]. For
all c for which 0.945 < c ≤ 1, the global minimum is the single point

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

at the origin; and f ∗ = 0 at this point. For c = 0.945, there are three
global minima. One is at the origin. The others are at ±(a, −a/2) where
a = (10/3)1/2.

For c < 0.945, there are two global minima at ±(b, −b/2) where

b =
[

4.2 + (17.64 − 14c)1/2

2c

]1/2

. (17.7.1)

At these points, f takes the negative (minimal) value

f ∗ = 22.05c − 18.522 + (3.5c − 4.41)(17.64 − 14c)1/2

c2
. (17.7.2)

The smallest value of f ∗ for c ∈ [0.9, 1] occurs for c = 0.9 for which
f ∗ = −1.8589, approximately.

Consider perturbing the problem continuously by letting c increase from
an initial value of 0.9. Initially, there are two global solution points that
move along (separate) straight lines in the x1, x2 plane until c = 0.945. As
c passes through this value, the global minimum jumps to the origin and
remains there for all c ∈ [0.945, 1].

A traditional perturbation analysis can detect the changes in the global
minimum as c increases slightly from c = 0.9 (say). However, an expansion
about this point cannot reveal the nature of the discontinuous change in
position of the global minimum as c varies at and near the value 0.945.

The algorithm in Section 12.14 solves this problem without difficulty.
Unfortunately, if termination tolerances are small, the output consists of an
undesirably large number of boxes.

For cI = [0.9, 1], the set x∗(cI) of solution points consists of three
parts. One part is the origin. Another is the line segment joining the two
points of the form (y, −y/2) where y = (10/3)1/2 at one endpoint and
y = {[21 + (126)1/2]/9}1/2 at the other endpoint. The third part of the set
is the reflection of this line segment in the origin.

The interval algorithm does not reveal the value of c at which the global
point jumps discontinuously. However, it bounds the solution set for all
c ∈ [0.9, 1] as closely as prescribed by the tolerances.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We ran this problem with c replaced by [0.9, 1]. The initial box had

components X
(0)
1 = X

(0)
2 = [−2, 4]. The function width tolerance εf was

chosen to be large so that termination was determined by the box size
tolerance εX. Thus, we chose εf = 105.

We chose εX to have the relatively large value 0.1 so that only a few
boxes were needed to cover the solution set. As is generally desired for the
first stage of the two-stage process described in Section 17.5, we obtained
rather crude bounds on the solution set.

The data for this example were computed using an algorithm similar to
but less sophisticated than the one in Section 12.14. The algorithm produced
a set of 11 boxes covering the solution set. The smallest box covering one
subset of the exact solution is

[[1.825, 1.893]
0.9128, 0.9462]

]

. (17.7.3)

This solution set was covered by five “solution” boxes. The smallest box
containing these five boxes is

[[1.739, 1.896]
0.856, 0.968]

]

.

The interval components of this box are too large by roughly the size of the
tolerance εX.

The reflection (in the origin) of the exact solution set (17.7.3) is also
a solution set. It was covered by five “solution” boxes in much the same
way.

The third subset of the exact solution is the origin. It remains an isolated
solution point as c varies. It is a global solution for all c ∈ [0.945.1]. Its
location was computed precisely and is guaranteed to be exact because the
bounding interval components are degenerate.

The bounds on the set of values of f ∗ were computed to be the interval
[−4.781, 0]. The correct interval is [−1.859, 0]. Since we chose εf = 105,
the algorithm was not configured to produce good bounds on the interval
f ∗(cI). The more stringent box size tolerance εX = 0.1 kept the bounds on

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

f ∗(cI) from being even worse. When we choose εX smaller, we incidentally
bound f ∗(cI) more sharply.

With a smaller value of εX, the algorithm produces a larger number
of smaller boxes covering the solution set more accurately and produces a
narrower bound on f ∗(cI).

Note that even with the loose tolerances used, the algorithm correctly
computed three disjoint sets covering the three correct solution sets.

Since the set of output boxes formed strictly disjoint subsets, we must
allow for the possibility that the global solution points move discontinuously
as c varies. This implies that the John points in the output boxes can
correspond to local (nonglobal) minima for some values of c ∈ cI. For this
example, we know that this is, in fact, the case. Generally, however, we do
not know the nature of such a solution.

If we apply the method of Section 17.5 to bound f ∗(cI) for each of the
three “solution” regions separately, we obtain the approximate bounding
interval [−1.8589, 5.4359]. Outwardly rounded to five decimal digits, the
correct interval is [−1.8589, 0]. To compute a reasonably accurate result,
εX must be considerably smaller than the 0.1 value used above. Alterna-
tively, εf can be chosen smaller.

17.8 SECOND NUMERICAL EXAMPLE

We now consider a second example. It adds little to our understanding of
the subject of this chapter. However, it is another easily analyzed example
with which to research global optimization algorithms.

Our example is an inequality constrained minimization problem. The
objective function is

f (x1, x2) = 12x2
1 − 6.3x4

1 + cx6
1 + 6x1x2 + 6x2

2

as in Section 17.7. We impose the constraints

p1(x) = 1 − 16x2
1 − 25x2

2 ≤ 0,

p2(x) = 13x3
1 − 145x1 + 85x2 − 400 ≤ 0,

p3(x) = x1x2 − 4 ≤ 0.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

As in Section 17.7, we replace c by the interval [0.9, 1].
For this problem, the position of the global minimum again jumps

discontinuously as c varies. The jump occurs at c = c′ where c′ =
0.95044391,approximately.

For c′ ≤ c < 1, the global minimum occurs at two points on the
boundary of the feasible region where p1(x) = 0. For c = c′, these two
points are still global, and there are two other global minima in the interior
of the feasible region. For 0.9 ≤ c < c′, only the two minima in the interior
are global.

The minima in the interior are at ±(b, −b/2) where b is given by
(17.7.1). The value of the objective function at these points is given by
(17.7.2).

It can be shown that the minima on the boundary of the feasible region
where p1(x) = 0 are at ±(x1, x2) where x1 satisfies

(81.6x1 − 126x3
1 + 30cx5

1)(1 − 16x2
1)

1/2 − 6 + 192x2
1 = 0

and

x2 = −(1 − 16x2
1)/5.

The value of the minimum at these points depends very little on c. For
c = 0.9, the global minimum is f ∗ = 0.199035280 and for c = 1, f ∗ =
0.199035288 approximately. The value of x1 for c = c′ is 0.06604161 and
for c = 1 it is 0.066041626 approximately.

The smallest boxes containing the set of points of global minimum as
c varies over [0.9, 1] are (when outwardly rounded)

±
[[0.0660416, 0.0660417]

[−0.192896, −0.192895]
]

and

±
[[1.81787, 1.89224]

[−0.946118, −0.908935]
]

.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We solved this problem by an algorithm that differs somewhat from the
one given in Section 14.8. For reasons given in Section 17.3, we want εf

to be large. We chose εf = 105. We again regard the computations to be
the first stage of the two stage process given in Section 17.5. For such a
computation, we want εX to be relatively large. We chose εX = 0.05.

The algorithm produced a set of 92 boxes as the solution. One isolated
box is approximately

[[0.0625, 0.0750]
[−0.2040, −0.1779]

]

.

Another isolated box is approximately the negative of this one. They contain
the minima on the boundary of the feasible region.

One set of 76 contiguous boxes is isolated from all the other output
boxes. The smallest box containing all of them, when outwardly rounded
is

yI =
[[1.7472, 1.8923]

[−0.9611, −0.8679]
]

.

The remaining set of 14 boxes is contained in a single box that is approxi-
mately the negative of this one.

Because of the loose tolerances used, the results do not bound the so-
lution sets very tightly. The first output box above bounds a solution that
is insensitive to perturbation of c. Therefore the computed result can be
greatly improved by making the tolerance smaller.

Let yI denote the box containing the 76 contiguous output boxes as given
above. This box bounds a solution that is more sensitive to c’s perturbation.
The width of yI is 0.1451, while the correct solution can be bounded by a box
of width 0.0743. The individual boxes from which yI is determined satisfy
the convergence criteria and hence are each of width ≤ 0.05. However, the
size of the box covering their union is determined by the problem itself and
cannot be changed by choosing a tolerance.

Since the output consists of strictly disjoint subsets, we cannot expect
Assumption 17.5.1 of Section 17.5 to be satisfied. As in the example in
Section 17.7, we must either be satisfied with poor bounds on f ∗(cI) and

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

xI∗(cI) or else continue with the first phase of our algorithm using a smaller
box size tolerance.

17.9 THIRD NUMERICAL EXAMPLE

We now consider an example of a perturbed problem that arose in practice
as a chemical mixing problem. It is an equality constrained least squares
problem given by

Minimize (globally) f (x) =
18∑

i=1

(xi − ci)
2

subject to x1x9 = x2x14 + x3x4

x1x10 = x2x15 + x3x5

x1x11 = x2x16 + x3x6

x1x12 = x2x17 + x3x7

x1x13 = x2x18 + x3x8

x4 + x5 + x6 + x7 + x8 = 1

x9 + x10 + x11 + x12 + x13 = 1

x14 + x15 + x16 + x17 + x18 = 1

x14 = 66.67x4

x15 = 50x5

x16 = 0.015x6

x17 = 100x7

x18 = 33.33x8.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

The parameters ci and their uncertainties εi are given in the following table.

i ci ± εi i ci ± εi

1 100 ± 1.11 10 0.66 ± 0.017
2 89.73 ± 1.03 11 0.114 ± 0.0046
3 10.27 ± 0.51 12 0.002 ± 0.0001
4 0.0037 ± 0.00018 13 0.004 ± 0.00012
5 0.0147 ± 0.0061 14 0.245 ± 0.0067
6 0.982 ± 0.032 15 0.734 ± 0.02
7 0 ± 0 16 0.0147 ± 0.0061
8 0.0001 ± 0 17 0.0022 ± 0.0001
9 0.22 ± 0.0066 18 0.0044 ± 0.0013

We used the constraints to eliminate variables and write the problem as
an unconstrained problem in five variables. We first solved the unperturbed
case. The minimum value of f was found to be f ∗ = 3.07354796 ×
10−7 ± 2 × 10−15. We then solved the perturbed case. and obtained a set
of 59 boxes covering the solution set. The smallest single box (call it xI′)
containing the 59 boxes is given in the following table. We obtained the
interval [0, 2.556] bounding f ∗(cI).

i X′
i i X′

i

1 [96.2, 103.8] 10 [0.6046, 0.7207]
2 [87.7, 91.7] 11 [0.0603, 0.1638]
3 [8.47, 12.07] 12 [−0.0174, 0.0237]
4 [0.0035, 0.00348] 13 [−0.0109, 0.0205]
5 [0.0142, 0.0152] 14 [0.2338, 0.2559]
6 [0.98142, 0.98147] 15 [0.7122, 0.7556]
7 [−0.000205, 0.000249] 16 [0.0147, 0.0148]
8 [−0.000384, 0.000645] 17 [−0.0205, 0.0249]
9 [0.1983, 0.2440] 18 [−0.0128, 0.0215]

As pointed out above, we used the equality constraints to eliminate
variables and obtain an unconstrained optimization problem. Therefore,
the Jacobian for the function φ(x, c) expressing the John conditions (see
Section 17.6) is just the Hessian of the objective function. As described in

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Section 17.6, we verified that the Hessian (with c replaced by cI) does not
contain a singular matrix. Therefore, we know that the method described
in Section 17.5 yields sharp bounds on f ∗(cI) and xI∗(cI). We did not do
the computations.

17.10 AN UPPER BOUND

In Section 12.5, and elsewhere, we discuss how we can use an upper bound

f on the global minimum to improve the performance of our global opti-
mization algorithm. In this section, we consider an artifice in which we

preset f to zero in certain examples. We then give an example that shows
why this is particularly helpful in the perturbed case.

For simplicity, we consider the unconstrained case. Suppose we wish
to minimize f (x, cI) where cI is a nondegenerate interval vector. We apply
the algorithm given in Section 12.14.

Assume we know that f (x, c) is nonnegative for all values of x and c of
interest. Suppose we also know that f (x∗, c) = 0 for all c ∈ cI, where x∗
is the point of global minimum. Then we know that f ∗(cI) = 0. Therefore,

we set f = 0.

Least squares problems are sometimes of this type of problem. It can be
known that the squared functions are consistent and, hence, that f ∗(cI) = 0.

For example, see Walster (1988).
As described in Section 12.5, our algorithm deletes points of an original

box in which f (x, cI) > f. The smaller f, the more points that can be
deleted in a given application of the procedure. Thus, it is advantageous to

know f ∗(cI) when the algorithm is first applied. Often, the first value of f

computed by the algorithm is much larger than f ∗(cI). Values of f closer
to f ∗(cI) are computed as the algorithm proceeds.

We know f ∗(cI) = 0. In addition to speeding up the algorithm, this

also saves the effort of repeatedly trying to improve f. But, in the perturbed
case, there is another advantage. When we evaluate f (x, cI) at some point
x, we obtain an interval. The upper endpoint of this interval is an upper
bound for f ∗(cI). But even if we evaluate f (x, cI) at a global minimum
point x∗, the upper endpoint of the interval is not f ∗. It is larger because

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

the uncertainty imposed by the interval cI precludes the interval f (x∗, cI)

from being degenerate.

Therefore, we can never compute an upper bound f equal to f ∗(cI)

by evaluating f (x, cI). Knowing f ∗ = 0 and setting f = 0 provides an
advantage not otherwise obtainable.

We now consider an example. In Section 17.1, we pointed out that the
problem of solving the set of equations AIx = bI can be recast as the least
squares problem of minimizing

f (x, cI) = (AIx − bI)T (AIx − bI).

Here, the parameter vector cI is composed of the elements of AI and the
components of bI.

Consider the system given in Equation (5.3.1). The solution set is shown
in Figure 5.3.1. The smallest box containing the solution set is

[[−120, 90]
[−60, 240]

]

.

When we evaluate f (x, cI) at some point x, we obtain an interval
[f (x, cI), f (x, cI)]. It can be shown that the smallest value of f (x, cI)

for any x is 2862900/121, which is approximately 23660.33. Suppose we

compute f equal to this best possible value we can compute.

Suppose we then delete all points x where f (x, cI) > f. The smallest
box that contains the remaining points can be shown to be

[[−291.98, 243.82]
[−277.53, 457.53]

]

.

If we rely only on the procedure that uses f to delete points, the computed
solution is much larger than it is possible to compute by including other
procedures. The other procedures in the optimization algorithm delete
whatever remaining points they can that are outside the solution set.

If we set f = 0, then deleting points where f (x, cI) > f can delete all

points not in the solution set. That is, the subroutine using f can contribute
to the progress of the algorithm as long as points remain that are not in the
solution set.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

17.11 SHARP BOUNDS FOR PERTURBED SYSTEMS OF
NONLINEAR EQUATIONS

We discussed perturbed systems of nonlinear equations of one variable in
Section 9.10 and the multivariable case in Section 11.17. In this section,
we discuss how such problems can be recast as optimization problems. We
can then use the methods discussed earlier in this chapter to compute sharp
bounds on the smallest box containing the solution set.

Consider a perturbed problem

f(x, cI) = 0 (17.11.1)

where f is a vector of nonlinear functions and x is a vector of the same
number of dimensions. The interval cI can be a scalar or vector. We
replace this problem by

Minimize f (x, cI) (17.11.2)

where

f (x, cI) = [f(x, cI)]T f(x, cI).

Pintér (1990) suggests solving unperturbed systems of nonlinear equa-
tions by recasting them as global optimization problems. He does not use
interval methods. He considers more general norms than least squares.

We can apply the method described in Section 17.5 to solve (17.11.2)
and thus compute sharp bounds on the smallest box containing the set of
solutions of f(x, cI) = 0.

It is reasonable to assume that (17.11.1) has a solution for all c ∈ cI.
However, we need assume only that there exists at least one c ∈ cI for which
a solution exists. Under this assumption, the globally minimum value f ∗
of f is zero.

In Section 12.5, we discussed how an upper bound f on the global
minimum f ∗ can be used in our optimization algorithm. Since we know

that f ∗ = 0, we set f = 0. As pointed out in Section 17.10, this improves
the performance of our algorithm.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Chapter 18

MISCELLANY

18.1 NONDIFFERENTIABLE FUNCTIONS

In this chapter, we discuss some short topics that do not fit conveniently
into previous chapters. We begin with a discussion of nondifferentiable
objective functions.

As we have pointed out earlier, the simplest interval methods for global
optimization do not require that the objective function or the constraint
functions be differentiable. However, the most efficient methods require
some degree of continuous differentiability. It is sometimes possible to
replace problems involving nondifferentiable functions with ones having
the desired smoothness.

We now consider two such reformulations from Lemaréchal (1982).
We then introduce two more general reformulations.

In what follows in this section, the letter x denotes a vector of precisely
n variables. This remains true even after we introduce additional variables
xn+1, xn+2, etc.

Consider the unconstrained minimization problem

Minimize f (x) =
m∑

i=1

|fi(x)| (18.1.1)

in n variables. Note that |fi(x)| is not differentiable where fi(x) = 0.

Lemaréchal reformulates the problem as the following inequality con-

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

strained problem in n + m variables.

Maximize
n+m∑

i=n+1

xi (18.1.2)

subject to

{
fi(x) ≤ xn+i (i = 1, · · · , m)

−fi(x) ≤ xn+i (i = 1, · · · , m).

The differentiability of this new problem is limited only by the differentia-
bility of the functions fi (i = 1, · · · , m).

Next, consider the minimax problem

Minimize maximum
i=1,··· ,m fi(x). (18.1.3)

Lemaréchal notes that this problem can be reformulated as

Minimize xn+1 (18.1.4)

subject to fi(x) ≤ xn+1 (i = 1, · · · , m).

Note that in each of Lemaréchal’s reformulations, it is necessary that
at least one of the introduced constraints be active at the solution. This
is ensured by the fact that the objective function is minimized for each
problem.

With Lemaréchal’s reformulations, we are able to replace the absolute
value function and the max function by differentiable functions provided
they occur in the objective function. We now give different reformulations
that allow these functions to occur in the constraints of the original problem
as well as in more general forms in the objective function.

We first consider the absolute value function. Suppose the function
|t (x)| occurs somewhere in the statement of a given optimization problem.
We replace |t (x)| by a new variable xn+1 and add the constraints xn+1 ≥ 0
and

[t (x)]2 − x2
n+1 = 0. (18.1.5)

The presence of the constraint (18.1.5) causes xn+1 to take on the re-
quired value of |t (x)| at the solution point. Lemaréchal’s use of inequality
constraints allows slack at the solution, in general.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

Next, we consider the max function. We begin by noting that

max{t1, t2} = 0.5(t1 + t2 + |t1 − t2|).

Using this relation and our procedure for replacing the absolute value func-
tion, we can replace max{t1, t2} by 0.5[t1(x) + t2(x) + xn+1] if we add the
constraints xn+1 ≥ 0 and

[t1(x) − t2(x)]2 − x2
n+1 = 0.

This enables us to treat the max of two functions. If there are more than
two functions, we can use the relation

max{t1, t2, t3} = max{t1, max(t2, t3)}

recursively.
Note that the minimum of two or more functions can be treated by using

the relation

min{f1, f2} = − max{−f1, −f2}.

These procedures produce differentiability at the expense of added vari-
ables. Therefore, we have two options. First, we can solve the original
problem using a simple (and hence slow) interval algorithm that does not
require differentiability. Second, we can solve a reformulated problem
involving more variables using a more efficient algorithm.

It is not clear which option is best for a given problem. However,
it seems probable that the second approach requires less computing, in
general.

The minimax problem with or without inequality constraints can be
solved directly by interval methods. That is, a reformulation such as that
described above is not needed. See Wolfe (1999).

Optimization problems with certain max-min constraints can also be
converted to standard optimization problems by a method given by Kirjner

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

and Polak (1998). Their method is applicable when the constraints have
the form

max
k∈R

min
j∈Qk

f
j

k (x)

where R is the set of integers {1, · · · , r} for some integer r and for any
k ∈ R, Qk is a set of integers {1, · · · , qk}.

18.2 INTEGER AND MIXED INTEGER PROBLEMS

The approach to the global optimization problem that we have used is
applicable to problems in which some or all of the variables are required to
take integer values only. In this section, we briefly discuss such problems.

As we have pointed out before, our approach to solving a global opti-

mization problem is as follows: Begin with a box xI(0) in which the solution
is sought. Delete subboxes that can be proved (using interval methods) not
to contain the global solution. Continue until the remaining set of points is
small.

For simplicity, assume that all variables must take integer values. First
consider imposing this condition on the unconstrained problem. We can

delete or reduce a subbox xI of xI(0) using the following procedures.

1. For any box xI generated during the application of the algorithm,
reduce each interval component until its endpoints are integers.

2. If the i-th component of the gradient of f is positive (negative),
replace the i-th component Xi of xI by the degenerate interval equal
to the smallest (largest) integer in Xi . Compare the procedure in
Section 12.4.

3. Generate sample values of the objective function f as in Section 12.5

to obtain an upper bound f on the global minimum f ∗. Now, however,
the sample point must have integer components. As in Section 12.5,

delete subboxes of the current box xI where f > f.

4. Use hull consistency and box consistency as discussed in Chapter 10.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

We leave it to the reader to put together algorithms similar to those
in earlier chapters for solving an integer optimization problem using the
procedures listed above. Such an algorithm is not very efficient.

Another approach that works when the variables must be integers is the
following: Add the constraints

sin(πxi) = 0 (i = 1, · · · , n). (18.2.1)

These constraints force the variables to be integers. The problem can now
be treated as if there are no conditions that variables take integer values.

Solving an integer or mixed integer problem in this form can be a
slow process. The constraints (18.2.1) are of little use unless the intervals
bounding the variables have width less than (say) 1. However, the method
produces the global solution.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

REFERENCES

1. Alefeld, G. (1968). Intervallrechnung über den Komplexen Zahlen
und einige Anwendungen, doctoral dissertation, University of Karl-
sruhe.

2. Alefeld, G., (1977), Das symmetrische Einzelshrittverfahren bei lin-
earen Gleichungen mit Intervallen als Koeffizienten, Computing, 18,
329–340.

3. Alefeld, G. (1979). Intervallanalytische Methoden bei nichtlinearen
Gleichungen, in Jahrbuch Überlicke Mathematik 1979, S.D. Chatterji
et al. (eds.) Bibliographisches Institut, Mannheim, pp. 63–78.

4. Alefeld, G. (1981). Bounding the slope of polynomial operators and
some applications, Computing 26, 227–237.

5. Alefeld, G. (1984). On the convergence of some interval arithmetic
modifications of Newton’s method, SIAM J. Numer. Anal. 21, 363–
372.

6. Alefeld, G. (1999). Interval arithmetic tools for range approximation
and inclusion of zeros, in Bulgar and Zenger (1999), pp. 1–21.

7. Alefeld, G. and Herzberger, J. (1970). ALGOL-60 Algorithmen zur
Auflösung linearer Gleichungs-systeme mit Fehlerfassung, Comput-
ing 6,28–34.

8. Alefeld, G. and Herzberger, J. (1974). Einführung in die Interval-
rechnung, Bibliographisches Institut, Mannheim.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

9. Alefeld, G. and Herzberger, J. (1983). Introduction to Interval Com-
putations, Academic Press, Orlando, Florida

10. Alefeld, G. and Rokne, J. (1984). On improving approximate trian-
gular factorizations iteratively, Beitr. Numer. Math. 12, 7–20.

11. Bao, P. G. and Rokne, J. G. (1988). Low complexity k-dimensional
Taylor forms, Appl. Math. Comput. 27, 265–280.

12. Bauer, W. and Strassen, V. (1983). The complexity of partial deriva-
tives, Theoret. Comput. Sci. 22, 317–330.

13. Bazaraa, M. S. and Shetty, C. M. (1979). Nonlinear Programming.
Theory and Practice, Wiley, New York.

14. Bliek, C. (1992). Computer methods for design automation, Ph. D.
thesis, Dept. of Ocean Engineering, Massachusetts Inst. of Tech.

15. Bliek, C., Jermann, C., and Neumaier, A. (eds.) (2003). Global opti-
mization and Constraint Satisfaction: First International Workshop
Global Constraint Optimization and Constraint Satisfaction, CO-
COS 2002 Valbonne-Sophia Antipolis, France, October 2–4, 2002.
Volume number: LNCS 2861.

16. Boche, R. (1966). Complex interval arithmetic with some applica-
tions, Lockheed Missiles and Space Co. Report 4-22-66-1.

17. Boggs, P. T., Byrd, R. H., and Schnabel, R. B. (eds.) (1985). Nu-
merical Optimization 1984, SIAM Publications.

18. Broyden, C. G. (1971), The convergence of an algorithm for solving
sparse nonlinear systems, Math. Comp., 25, 285–294.

19. Bulgar, H. and Zenger, C. (eds.). Error Control and Adaptivity in
Scientific Computing, Kluwer, Netherlands.

20. Burke, J. (1990). On the identification of active constraints II: The
nonconvex case, SIAM J. Numer Anal. 27, 1081–1102.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

21. Caprani, O. and Madsen, K. (1980). Mean value forms in interval
analysis, Computing 25, 147–154.

22. Casado, L, Garcia, I., and Sergeyev, Y. (2000). Interval branch
and bound algorithm for finding the first-zero-crossing-point in one-
dimensional functions, Reliable Computing 6, 179–191.

23. Collavizza, H., Delobel, F., and Rueher, M. (1999). Comparing
partial consistencies, Reliable Computing, 5, 213–228.

24. Corliss, G. F. (1995). Personal Communication.

25. Corliss, G. F. and Rall, L. B., Bounding Derivative Ranges, in En-
cyclopedia of Optimization, Panos, M. P. and Floudas, C. A. (eds.),
Kluwer, Dordrecht, (to appear).

26. Dantzig, G. and Eaves, B. C. (1975). Fourier-Motzkin elimination
and its dual with applications to integer programming, in Combina-
torial Programming: Methods and Application, Proceedings of the
NATO Advanced Study Institute, B. Roy (ed.), Reidel, Dordrecht,
Netherlands.

27. Deif, A. (1986). Sensitivity Analysis in Linear Systems, Springer-
Verlag, Berlin.

28. Dennis, J. E., Jr. and Schnabel, R. B. (1983). Numerical Methods
for Unconstrained Optimization and Nonlinear Equations, Prentice-
Hall, Englewood Cliffs, New Jersey.

29. Dinkel, J. J. and Tretter, M. J. (1987). An interval arithmetic approach
to sensitivity analysis in geometric programming, Oper. Res. 35,
859–866.

30. Dinkel, J. J. Tretter, M. J., and Wong, D. (1988). Interval Newton
methods and perturbed problems, Appl. Math. Comput. 28, 211–
222.

31. Dixon, L. C. W., and Szegö, G. P. (1975). Towards Global Optimiza-
tion, North Holland/American Elsevier, New York.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

32. Daumas, M. (2002). Past and future formalizations of the IEEE 754,
854 and 754R standards, Talk presented to the IEEE 754 committee.
July 18, 2002 at Cupertino, CA. (See:
grouper.ieee.org/groups/754/meeting-materials
/2002-07-18-daumas.pdf)

33. Dwyer, P. S. (1951). Computation with approximate numbers, in
Linear Computations, P. S. Dwyer (ed.), Wiley, New York, pp. 11–
34.

34. Floudas C. A., and Pardalos, P. M. (eds.) (1992). Recent Advances
in Global Optimization, Princeton University Press, Princeton, New
Jersey.

35. ForteT M Developer 6 Fortran 95. @
www.sun.com/forte/ by Sun Microsystems Inc., July, 2000.

36. ForteT M Developer 6 Update 1 C++. @
www.sun.com/forte/by Sun Microsystems Inc., October, 2000.

37. ForteT M Developer 6 Update 1 Fortran 95. @
www.sun.com/forte/by Sun Microsystems Inc., October, 2000.

38. Frommer, A. and Mayer, G. (1990). On the R-order of Newton-
like methods for enclosing solutions of nonlinear equations, SIAM
J. Numer. Anal. 27,105–116.

39. Gargantini, I. (1975a). Parallel square root iterations, in Nickel
(1975), pp. 195–204.

40. Gargantini, I. (1975b). Parallel Laguerre iterations, Numer. Math.
26, 317–323.

41. Gargantini, I. (1978). Further applications of circular arithmetic:
Schroeder-like algorithms with error bounds for finding zeros of poly-
nomials, SIAM J. Numer. Anal. 15, 497–510.

42. Gargantini, I. and Henrici, P. (1972). Circular arithmetic and the
determination of polynomial zeros, Numer. Math. 18, 305–320.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

43. Garloff, J. and Smith, A. P. (2000), Investigation of a subdivision
based algorithm for solving systems of polynomial equations, Proc.
of the 3rd World Congress of Nonlinear Analysis (WCNA 2000),
Catania, Italy.

44. Glatz, G. (1975). Newton-Algorithmen zur Bestimmung von Poly-
nomwurzeln unterVerwendung komplexer Kreisarithmetic, in Nickel
(1975), pp. 205–214.

45. Griewank, A. (1989). On automatic differentiation, in Mathematical
Programming 88, Kluwer Academic Publishers, Boston.

46. Griewank,A. (1991). The chain rule revisited in scientific computing,
SIAM News, May.

47. Griewank, A. (2000). Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation, SIAM Publ., Philadelphia.

48. Gustafson, J. L. (1994a). A Paradigm For Grand Challenge Perfor-
mance Evaluation, (HTML version:
www.scl.ameslab.gov/Publications/Grand
Challenge/Paradigm.html), (PDF version:
www.scl.ameslab.gov/Publications/Paradigm.pdf)
Proceedings of the Toward Teraflop Computing and New Grand
Challenge Applications Mardi Gras ’94 Conference, Baton Rouge,
Louisiana, February 1994.

49. Gustafson, J. L. (1994b). Teraflops and other false goals, Parallel
and Distributed Technology, Summer 1994.

50. Gustafson, J. L. (1995). HINT—A New Way To Measure Computer
Performance, (HTML version:
www.scl.ameslab.gov/Publications/HINT/
ComputerPerformance.html) (PDF version:
www.scl.ameslab.gov/Publications/HINT/HINT
Acrobat.pdf), in Gustafson and Snell (1995).

51. Gustafson, J. L. and Snell, Q. O. (1995). Proceedings of the HICSS-
28 Conference, Wailela, Maui, Hawaii, January 3–6, 1995.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

52. Gustafson, J. L. (1998). Computational verifiability of the ASCI pro-
gram, IEEE Computational Science and Engineering, March-June
1998.

53. Hansen, E. R. (1965). Interval arithmetic in matrix computations,
part I, SIAM J. Numer. Anal. 2, 308–320.

54. Hansen, E. R. (1968). On solving systems of equations using interval
arithmetic, Math. Comput. 22, 374–384.

55. Hansen, E. R. (1969a). Topics in Interval Analysis, Oxford University
Press, London.

56. Hansen, E. R. (1969b). On linear algebraic equations with interval
coefficients, in Hansen (1969a), pp. 35–46.

57. Hansen, E. R. (1969c). On the centered form, in Hansen (1969a),
pp. 102–106.

58. Hansen, E. R. (1975). A generalized interval arithmetic, in Nickel
(1975), pp.7–18.

59. Hansen, E. R. (1978a). Interval forms of Newton’s method, Com-
puting 20, 153–163.

60. Hansen, E. R. (1978b). A globally convergent interval method for
computing and bounding real roots, BIT 18, 415–424.

61. Hansen, E. R. (1979). Global optimization using interval analysis-the
one dimensional case, J. Optim. Theory Appl. 29, 331–344.

62. Hansen, E. R. (1980). Global optimization using interval analysis-the
multi-dimensional case, Numer. Math. 34, 247–270.

63. Hansen, E. R. (1984). Global optimization with data perturbations,
Comput. Ops. Res. 11, 97–104.

64. Hansen, E. R. (1988). An overview of global optimization using
interval analysis, in Moore (1988), pp. 289–307.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

65. Hansen, E. R. (1991). Bounding the set of solutions of a perturbed
global optimization problem, in Proceedings of the Second Workshop
on Global Optimization, International Institute for Applied Systems
Analysis.

66. Hansen, E. R. (1992). Bounding the solution of interval linear equa-
tions, SIAM J. Numer. Anal., 29, 1493–1503.

67. Hansen, E. R. (1993). Computing zeros of functions using general-
ized interval arithmetic, Interval Computations, 3, 3–28.

68. Hansen, E. R. (1997a). Preconditioning linearized equations, Com-
puting, 58, 187–196.

69. Hansen, E. R. (1997b). Sharpness in interval computations, Reliable
Computing, 3,17–29.

70. Hansen, E. R. (2000). The hull of preconditioned interval linear
equations, Reliable Computing, 6, 95–103.

71. Hansen, E. R. (2002). Sharp solutions for interval linear equations
(submitted).

72. Hansen, E. R. and Greenberg, R. I. (1983). An interval Newton
method, appl. Math. Comput. 12, 89–98.

73. Hansen, E. R. and Sengupta, S. (1980). Global constrained optimiza-
tion using interval analysis, in Nickel (1980), pp. 25–47.

74. Hansen, E. R. and Sengupta S. (1981). Bounding solutions of systems
of equations using interval analysis, BIT 21, 203–211.

75. Hansen, E. R. and Sengupta, S. (1983). Summary and steps of a
global nonlinear constrained optimization algorithm, Lockheed Mis-
siles and Space Co. report no. D889778.

76. Hansen, E. and Smith, R. (1967). Interval arithmetic in matrix com-
putations, Part 2, SIAM J. Numer. Anal., 4, 1–9.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

77. Hansen, E. R. and Walster, G. W. (1982). Global optimization in
nonlinear mixed integer problems, in Proc. 10th IMACS World Con-
ference on System Simulation and Scientific Computation, vol I, pp.
397–381.

78. Hansen, E. R. and Walster, G. W. (1992a). Bounds for Lagrange
multipliers and optimal points, in the Second Special Issue on Global
Optimization, Control, and Games, Comput. Math. Appl., pp. 59–
69.

79. Hansen, E. R. and Walster, G. W. (1992b). Nonlinear equations and
optimization, in the Second Special Issue on Global Optimization,
Control, and Games, Comput. Math. Appl.

80. Hansen, E. R. and Walster, G. W. (1992c). Equality constrained
global optimization, submitted to SIAM Journal On Control and Op-
timization. Note: The authors finished this paper and submitted it for
publication in 1987. It was to be published, but the authors have no
record of this fact. The paper will be resubmitted. In the meantime,
a preprint can be found at: www.cs.utep.edu/interval-
comp/EqualityConstraints.pdf

81. Hansen, E. R. and Walster, G. W. (2002). Sharp bounds on interval
polynomial roots. Reliable Computing, 8–2, 115–112.

82. Hansen, E. R. and Walster, G. W. (2003). Solving overdetermined
systems of linear equations. Submitted to Reliable Computing.

83. Hanson, R. J. (1968). Interval arithmetic as a closed arithmetic sys-
tem on a computer, Jet Propulsion Laboratory report 197.

84. Hartfiel, D. J. (1980). Concerning the solution of Ax = b when
P ≤ A ≤ Q and p ≤ b ≤ q, Numer. Math. 35, 355–359.

85. Hebgen, M. (1974). Eine scaling Pivotsuche für Intervallmatrizen,
Computing 12, 99–106.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

86. Heindl, G., Kreinovich, V., and Lakeyev, A. (1998), Solving linear in-
terval systems is NP-hard even if we exclude overflow and underflow,
Reliable Computing, 4, 383–388.

87. Hennessy, J. L. and Patterson, D. A. (1994). Computer Organization
and Design, Morgan Kaufmann, San Mateo, California.

88. Henrici, P. (1975). Einige Anwendungen der Kreisscheibenarith-
metic in der Kettenbruchtheorie, in Nickel (1975), pp. 19–30.

89. Hickey, Q. J. and Van Emden M. H. (1999). Interval Arithmetic:
From Principles to Implementation, Technical Report DCS-260-IR,
Department of Computer Science, Victoria, B.C. Canada.

90. Hock, W. and Schittkowski, K. (1981). Test Examples for Nonlinear
Programming Codes, Lecture Notes in Economics and Mathematical
Systems, Springer-Verlag, New York.

91. IBM (1986a). IBM high accuracy arithmetic subroutine library
(ACRITH). General information manual GC33-6163-02, third edi-
tion.

92. Ichida, K., and Fujii, Y. (1990). Multicriterion optimization using
interval analysis, Computing 44, 47–57.

93. IEEE (1985). IEEE standard for binary floating-point arithmetic,
ANSI/IEEE STD 754–1985 Technical Report, New York.

94. Iri, M. (1984). Simultaneous computation of functions, partial deriva-
tives, and estimates of rounding errors-complexity and practicality,
Jpn. J. Appl. Math. 1, 223–252.

95. Jacobs, D. (ed.) (1976). The state of the art in numerical analysis,
in Proc. Conference on the State of the Art in Numerical Analysis,
University of York.

96. Jaulin, L., Kieffer, M., Didrit, O., and Walter, É. (2001) Applied
Interval Analysis, Springer-Verlag, London.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

97. Kahan, W. M. (1968). A more complete interval arithmetic, Lecture
notes for a summer course at the University of Michigan.

98. Kearfott, R. (1992). An interval branch and bound algorithm for
bound constrained optimization problems, J. Global Optimiz., 2,
259–280.

99. Kearfott, R. (1996). Rigorous Global Search: Continuous Problems,
Kluwer Academic Publ., Dordrecht.

100. Kearfott, R. B. and Dian, J. (2000). Existence verification for higher-
degree singular zeros of complex nonlinear systems, preprint,
interval.louisiana.edu.cplx.0302.pdf.

101. Kirjner, C. and Polak, E. (1998). On the conversion of optimization
problems with max-min constraints to standard optimization prob-
lems, SIAM J. Optim., 8, 887–915.

102. Krawczyk, R. (1969). Newton-Algorithmen zur Bestimmung von
Nullstellen mit Fehlershranken, Computing 4, 187–201.

103. Krawczyk, R. (1983). A remark about the convergence of interval
sequences, Computing 31, 255–259.

104. Krawczyk, R. (1986). A class of interval Newton operators, Com-
puting 37, 179–183.

105. Krawczyk, R., and Neumaier, A. (1985). Interval slopes for rational
functions and associated centered forms, SIAM J. Numer. Anal. 22,
604–616.

106. Kreier, N. (1974). Komplexe Kreisarithmetic, Z. Angew. Math.
Mech. 54, 225–226.

107. Kreier, N., and Spellucci, P. (1975). Einschliessungsmengen von
Polynom-Nullstellen, in Nickel (1975), pp.223–229.

108. Kreinovich, V., Lakeyev, A., Rohn, J., and Kahl, P., Computational
complexity and feasibility of data processing and interval computa-
tions, Kluwer, Dordrecht, 1998.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

109. Kulisch, U. (ed.) (1987). Computer Arithmetic, Scientific Computa-
tion and Programming Languages, Teubner, Stuttgart.

110. Kulisch, U., and Miranker, W. L. (eds.) (1983). A New Approach to
Scientific Computation, Academic Press, Orlando, Florida.

111. Lemaréchal, C. (1982). Nondifferentiable optimization, in Powell
(1982), pp. 85–89.

112. Levy, A. V., and Gomez, S. (1985). The tunneling method applied
to global optimization, in Boggs, Byrd, and Schnabel (1985), pp.
213–244.

113. Levy, A. V., Montalvo, A., Gomez, S., and Calderon, A. (1981). Top-
ics in Global Optimization, Lecture Notes in Mathematics No.909,
Springer-Verlag, New York.

114. Loh, E. and Walster, G. W. (2002). Rump’s example revisited. Reli-
able Computing, 8 (2) 245–248.

115. Mancini, L. J., (1975). Applications of interval arithmetic in sig-
nomial programming, Technical report SOL 75–23, Systems Opti-
mization Laboratory, Department of Operations Research, Stanford
University.

116. Mancini, L. J., and McCormick, G. P. (1976). Bounding global
minima, Math. Oper. Res. 1, 50–53.

117. McAllester, D., Van Hentenryck, P., and Kapur, D. (1995), Three cuts
for accelerated interval propagation, Massachusetts Inst. of Tech.
Artificial Intelligence Lab. memo no. 1542.

118. Metropolis, N., et al. (eds.) (1980). A History of Computing in the
20th Century, Academic Press, New York.

119. Mohd, I. B., (1990). Unconstrained global optimization using strict
complementary slackness, Appl. Math. Comput. 36, 75–87.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

120. Moore, R. E. (1965). The automatic analysis and control of error
in digital computation based on the use of interval numbers, in Rall
(1965), pp. 61–130.

121. Moore, R. E. (1966).Interval Analysis, Prentice-Hall, Englewood
Cliffs, New Jersey.

122. Moore, R. E. (1977). A test for existence of solutions of nonlinear
systems, SIAM J. Numer. Anal. 14, 611–615.

123. Moore, R. E. (1979).Methods and Applications of Interval Analysis,
SIAM Publ., Philadelphia, Pennsylvania.

124. Moore, R. E. (1980). Microprogrammed interval arithmetic, ACM
SIGNUM Newsletter. 15(2), p. 30.

125. Moore, R. E. (ed.) (1988).Reliability in Computing, Academic Press,
San Diego.

126. Moore, R. E. (1991). Global optimization to prescribed accuracy,
Comput Math. Appl. 21, 25–39.

127. Moore, R. E., Hansen, E. R„ and Leclerc, A. (1992). Rigorous
methods for parallel global optimization, in Floudas and Pardalos
(1992), pp.321–342.

128. Moré, J. J., Garbow, B. S., and Hillstrom, K. E. (1981). Testing
unconstrained optimization software, ACM Trans. Math. Software
7, 17–41.

129. Nataraj, P. S. V. and Sardar, G. (2000). Computation of QFT bounds
for robust sensitivity and gain-phase margin specifications, Trans.
ASME Journal of Dynamical Systems, Measurement, and Control,
Vol. 122, pp. 528–534.

130. Nataraj, P. S. V. (2002a). Computation of QFT bounds for robust
tracking specifications, Automatica, Vol. 38, pp. 327–334.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

131. Nataraj, P. S. V. (2002b). Interval QFT: A mathematical and compu-
tational enhancement of QFT, Int. Jl. Robust and Nonlinear Control,
Vol. 12, pp. 385–402.

132. Neumaier, A. (1981). Interval norms, Inst. angew. Math. report
81/5, University of Freiburg.

133. Neumaier, A. (1985). Interval iteration for zeros of systems of equa-
tions, BIT 25, 256–273.

134. Neumaier, A. (1986). Linear interval equations, in Nickel (1986),
pp. 114–120.

135. Neumaier, A. (1988). The enclosure of solutions of parameter-
dependent systems of equations, in Moore (1988), pp. 269–286.

136. Neumaier, A. (1990). Interval Methods for System of Equations,
Cambridge University Press, London.

137. Neumaier,A. (1999). A simple derivation of the Hansen-Bliek-Rohn-
Ning-Kearfott enclosure for interval linear equations, Reliable Com-
puting, 6, 131–136.

138. Neumaier, A. (2000). Erratum to: A simple derivation of the Hansen-
Bliek-Rohn-Ning-Kearfott enclosure for interval linear equations,
Reliable Computing, 6, 227.

139. Nickel, K. L. (1969). Zeros of polynomials and other topics, in
Hansen (1969a), pp. 25–34.

140. Nickel, K. L. (1971). On the Newton method in interval analysis,
University of Wisconsin, Mathematics Research Center report 1136.

141. Nickel, K. L. (ed.) (1975). Interval Mathematics, Springer-Verlag,
New York.

142. Nickel, K. L. (1976). Interval-Analysis, in Jacobs (1976), pp. 193–
225.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

143. Nickel, K. (1977). Die Überschätzung des Wertebereichs einer Func-
tion in der Intervallrechnumg mit Anwendungen auf lineare Gle-
ichungssysteme, Computing, 18, 15–36.

144. Nickel, K. L. (ed.) (1980). Interval Mathematics 1980, Academic
Press, New York.

145. Nickel, K. L. (ed.) (1986). Interval Mathematics 1985, Springer
Lecture Notes in Computer Science No. 212, Springer-Verlag, New
York.

146. Nickel, K. L., and Ritter, K. (1972). Termination criteria and numer-
ical convergence, SIAM J, Numer. Anal. 9, 277–283.

147. Ning, S. and Kearfott, R. (1997). A comparison of some methods
for solving linear interval equations, SIAM J. Numer. Anal., 34,
1289–1305.

148. Oettli, H. (1965). On the solution set of a linear system with inaccu-
rate coefficients, SIAM J. Numer. Anal. 2, 115–118.

149. Oettli, H., Prager, H., and Wilkinson, J. H. (1965). Admissible solu-
tions of linear systems with not sharply defined coefficients, SIAM
J. Numer. Anal. 2, 291–299.

150. Palmer, J. F. and Morse, S. P. (1984). The 8087 Primer, Wiley Press,
New York.

151. Pintér, J. (1990). Solving nonlinear equation systems via global
partition and search: some experimental results, Computing 43, 309–
323.

152. Powell, M. J. D. (ed.) (1982).Nonlinear Optimization, 1981, Aca-
demic Press, New York.

153. Qi. L. (1982). A note on the Moore test for nonlinear systems, SIAM
J. Numer. Anal. 19, 851–857.

154. Rall, L. B. (1965). Error in Digital Computation, Vol. I, Wiley, New
York.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

155. Rall, L. B. (1969). Computational Solution of Nonlinear Operator
Equations, Wiley, New York.

156. Rall, L. B. (1981).Automatic Differentiation-Techniques and Appli-
cations, Springer Lecture Notes in Computer Science, Vol. 120,
Springer-Verlag, New York.

157. Rall, L. B. (1983). Differentiation and generation of Taylor coeffi-
cients in Pascal-SC, in Kulisch and Miranker (1983), pp. 291–309.

158. Rall, L. B. (1984). Differentiation in PASCAL-SC: type gradient,
ACM Trans. Math. Software 10, 161–184.

159. Rall, L. B. (1987). Optimal implementation of differentiation arith-
metic, in Kulisch (1987).

160. Ratschek, H., and Rokne, J. (1984). Computer Methods for the Range
of Functions, Halstead Press, New York.

161. Ratschek, H., and Rokne, J. (1988). New Computer Methods for
Global Optimization, Wiley, New York.

162. Ratz, D. (1994). Box splitting strategies for the interval Gauss-Seidel
step in a global optimization method, Computing, 53, 337–353.

163. Ratz, D. (1998). Automatic Slope Computation and Its Application
In Nonsmooth Global Optimization, Shaker Verlag, Aachen.

164. Ratz, D. (1999). A nonsmooth global optimization technique using
slopes — the one-dimensional case. Jour. Global Optim. 14, 365–
393

165. Reichmann, K. (1979). Abbruch beim Intervall-Gauss-Algorithmus,
Computing 22, 355–362.

166. Rigal, J. L., and Gaches, J. (1967). On the compatibility of a given
solution with the data of a linear system, J. Assoc. Comput. Mach.
14, 543–548.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

167. Ris, F. N. (1972). Interval analysis and applications to linear algebra,
Ph.D. dissertation, Oxford University.

168. Ris, F. N. (1975). Tools for the analysis of interval arithmetic, in
Nickel (1975), pp. 75–98.

169. Robinson, S. M. (1973). Computable error bounds for nonlinear
programming, Math. Programming 5, 235–242.

170. Rohn, J. (1993). Cheap and tight bounds: The recent result of E.
Hansen can be made more efficient, Interval Computations, 4, 13–21.

171. Rokne, J. G. (1986). Low complexity k-dimensional centered forms,
computing 37, 247–253.

172. Rokne, J. G., and Bao, P. (1987). Interval Taylor forms, Computing
39, 247–259.

173. Rump, S. M. (1988). Algorithm for verified inclusions-theory and
practice, in Moore (1988), pp. 109–126.

174. Rump, S. M. (1990). Rigorous sensitivity analysis for systems of
linear and nonlinear equations, Math. Comput. 54, 721–736.

175. Rump, S. M. (1996). Expansion and estimation of the range of non-
linear functions, Math. Comp., 65, 1503–1512.

176. Schwefel, H. (1981).Numerical Optimization of Computer Models,
Wiley, new York.

177. Sengupta, S. (1981). Global nonlinear constrained optimization,
Ph.D. dissertation, Washington State University.

178. Shary, S. (1995), On optimal solution of interval linear equations,
SIAM J. Numer. Anal., 32, 610–630.

179. Shary, S. (1999). Outer estimation of generalized solution sets to
interval linear systems, Reliable Computing, 5, 323–335.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

180. Shearer, J. M., and Wolfe, M. A. (1985a). some computable ex-
istence, uniqueness, and convergence tests for nonlinear systems,
SIAM J. Numer. Anal. 22, 1200–1207.

181. Shearer, J. M., and Wolfe, M. A. (1985b). An improved form of the
Krawczyk-Moore algorithm, Appl. Math. Comput. 17, 229–239.

182. Speelpenning, B. (1980). Compiling fast partial derivatives of func-
tions given by algorithms, Ph.D. dissertation, Department of Com-
puter Science, University of Illinois at Urbana-Champaign.

183. Stewart, G. W. (1973). Introduction to Matrix Computations, Aca-
demic Press, New York.

184. Sunaga, T. (1958). Theory of interval algebra and its application to
numerical analysis, RAAG Memoirs 3, 29–46.

185. Van Hentenryck, P., McAllester, D., and Kapur, D. (1997), Solv-
ing Polynomial systems using branch and prune approach, SIAM J.
Numer. Anal., 34, 797–827.

186. Van Hentenryck, P., Michel, L., and Deville, Y. (1997), Numerica. A
Modeling Language for Global Optimization, The MIT Press, Cam-
bridge.

187. Walster, G. W. (1988). Philosophy and practicalities of interval arith-
metic, pages 309–323 of Moore (1988).

188. Walster, G. W. (1996). Interval Arithmetic: The New Floating-Point
Arithmetic Paradigm, Sun Solaris Technical Conference, June 1996.

189. Walster, G. W. (2000a). The “Simple” closed interval system, Tech-
nical report, Sun Microsystems Inc., February, 2000.

190. Walster, G. W. (2000b). Interval arithmetic programming reference:
Forte™ workshop 6 Fortran 95. Sun Microsystems Inc., May 2000.

191. Walster, G. W. (2000c). Interval arithmetic programming reference:
Forte™ workshop 6 update 1 Fortran 95. Sun Microsystems Inc.,
Nov., 2000.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

192. Walster, G. W. (2002). Implementing the “Simple” Closed Interval
System. See:
www.sun.com/software/sundev/whitepapers/
simple-implementation.pdf

193. Walster, G. W. (2003a). Exterior interval continuity, to be submitted
for publication.

194. Walster, G. W. (2003b). The containment set based interval arith-
metic standard, to be submitted for publication.

195. Walster, G. W. and Chiriaev, D. (2000). Interval arithmetic program-
ming reference: Forte™ workshop 6 update 1 C++. Sun Microsys-
tems Inc., Nov, 2000.

196. Walster, G. W. and Hansen, E. R. (1997). Interval algebra, compos-
ite functions, and dependence in compilers, Technical Report, Sun
Microsystems Inc.

197. Walster, G. W. and Hansen, E. R. (1998). Composite functions in
interval mathematics. Preprint available at:
www.mscs.mu.edu/˜globsol/readings.html#Walster
March, 1998.

198. Walster, G. W. and Hansen, E. R. (2003). Computing interval param-
eter bounds from fallible measurements using overdetermined (tall)
systems of nonlinear equations, in Bliek, C., et. al. (2003)

199. Walster, G. W. and Hansen, E. R. (2004). Using pillow functions to
efficiently compute crude range tests, in the SCAN 2000 Proceedings
to appear in Num. Alg.

200. Walster, G. W., Hansen, E. R., and Pryce, J.D. (2000). Extended
real intervals and the topological closure of extended real relations,
Technical Report, Sun Microsystems Inc., February, 2000.

201. Walster, G. W., Hansen, E. R., and Sengupta, S. (1985). Test results
for a global optimization algorithm, in Boggs, Byrd, and Schnabel
(1985), pp. 272–287.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

202. Walster, G. W. and Kreinovich, V. (2003). Computational complexity
of optimization and crude range testing: a new approach motivated
by fuzzy optimization, Fuzzy Sets and Systems, 9, 179–208.

203. Walster, G. W., Liddiard, L. and Tretter, M. J. (1980). INTLIB User
Manual (unpublished).

204. Walster, G., Pryce, J.D., and Hansen, E. R. (2002). Practical, excep-
tion-free interval arithmetic on the extended reals. SIAM Journal on
Scientific Computing. The paper was provisionally accepted for pub-
lication; has since been significantly revised; and will be resubmitted
for publication.

205. Warmus, M. (1956). Calculus of approximations, Bull. de l’Academie
Polonaise des Sciences, 4, 253–259.

206. Warmus, M. (1960). Approximations and inequalities in the calculus
of approximations. Classification of approximate numbers, Bull. de
l’Academie Polonaise des Sciences, 9, 241–245.

207. Watson, L. T. (1986). Numerical linear algebra aspects of globally
convergent homotopy methods, SIAM Rev. 28, 529–545.

208. Wilkinson, J. H. (1965). The Algebraic Eigenvalue Problem, Oxford
University Press, London.

209. Wilkinson, J. H. (1980). Turing’s work at the NPL and the PilotACE,
DEUCE, and ACE, in Metropolis, et al. (1980).

210. Wolfe, M. A.(1999). On discrete minimax problems in R using in-
terval arithmetic, Reliable Computing 5, 371–383.

211. Wolfe, P. (1982). Checking the calculation of gradients, ACM Trans.
Math. Software 6, 337–343.

212. Wongwises, P. (1975a). Experimentelle Untersuchungen zur nu-
merische Auflösungen von linearen Gleichungssystemen mit Fehler-
shranken, dissertation, Instituts für Praktische Mathematik, report
75/1, University of Karlsruhe.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

213. Wongwises, P. (1975b). Experimentelle Untersuchungen zur nu-
merische Auflösungen von linearen Gleichungssystemen mit Fehler-
shranken, in Nickel (1975), pp. 316–325.

214. Yohe, J. M. (1979). Implementing nonstandard arithmetic, SIAM
Rev. 21, 34–56.

215. Zuhe, S., and Wolfe, M. A. (1990). On interval enclosures using
slope arithmetic, Appl. Math. Comput. 39, 89–105.

Copyright 2004 by Marcel Dekker, Inc. and Sun Microsystems, Inc.

	dke232__fm.pdf
	Global Optimization Using Interval Analysis
	Contents
	Dedication
	Foreword
	Preface

	DKE232_CH01.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 1: Introduction
	1.1 An Overview
	1.2 The Origin Of Interval Analysis
	1.3 The Scope Of This Book
	1.4 Virtues And Drawbacks Of Interval Mathematics
	1.4.1 Rump’s Example
	1.4.2 Real Examples
	1.4.3 Ease Of Use
	1.4.4 Performance Benchmarks
	1.4.5 Interval Virtues

	1.5 The Future Of Intervals

	DKE232_CH02.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 2: Interval Numbers And Arithmetic
	2.1 Interval Numbers
	2.2 Notation And Relations
	2.3 Finite Interval Arithmetic
	2.4 Dependence
	2.4.1 Dependent Interval Arithmetic Operations

	2.5 Extended Interval Arithmetic

	DKE232_CH03.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 3: Functions Of Intervals
	3.1 Real Functions Of Intervals
	3.2 Interval Functions
	3.3 The Forms Of Interval Functions
	3.4 Splitting Intervals
	3.5 Endpoint Analysis
	3.6 Monotonic Functions
	3.7 Practicalevaluationofintervalfunctions
	3.8 Thick And Thin Functions

	DKE232_CH04.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 4: Closed Interval Systems
	4.1 Introduction
	4.2 Closed System Benefits
	4.2.1 Generality
	4.2.2 Speed Andwidth

	4.3 Thesetfoundationforclosedintervalsystems
	4.4 The Containment Constraint
	4.4.1 The Finite Interval Containment Constraint
	4.4.2 The (extended) Containment Constraint

	4.5 The (extended) Containment Set
	4.5.1 Historical Context
	4.5.2 A Simple Example:
	4.5.3 Cset Notation
	4.5.4 The Containment Set Of

	4.6 Arithmetic Over The Extended Real Numbers
	4.6.1 Empty Sets And Intervals
	4.6.2 Cset-equivalent Expressions

	4.7 Closed Interval Systems
	4.7.1 Closed Interval Algorithm Operations

	4.8 Extended Fundamental Theorem
	4.8.1 Containment Sets And Topological Closures
	4.8.2 Multi-valued Expressions
	4.8.3 Containment-set Inclusion Isotonicity
	4.8.4 Fundamental Theorem Of Interval Analysis
	4.8.5 Continuity

	4.9 Vector And Matrix Notation
	4.10 Conclusion

	DKE232_CH05.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 5: Linear Equations
	5.1 Definitions
	5.2 Introduction
	5.3 The Solution Set
	5.4 Gaussian Elimination
	5.5 Failure Of Gaussian Elimination
	5.6 Preconditioning
	5.7 The Gauss-seidel Method
	5.8 The Hull Method
	5.8.1 Theoretical Algorithm
	5.8.2 Practical Procedure

	5.9 Combining Gauss-seidel And Hull Methods
	5.10 The Hull Of The Solution Set Of A'x=b
	5.11 A Special Preconditioning Matrix
	5.12 Overdetermined Systems

	DKE232_CH06.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 6: Inequalities
	6.1 Introduction
	6.2 A Single Inequality
	6.3 Systems Of Inequalities
	6.4 Ordering Inequalities
	6.5 Secondary Pivots
	6.6 Column Interchanges
	6.7 The Preconditioning Matrix
	6.8 Solving Inequalities

	DKE232_CH07.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 7: Taylor Series And Slope Expansions
	7.1 Introduction
	7.2 Bounding The Remainder In Taylor Expansions
	7.3 The Multidimensional Case
	7.4 The Jacobian And Hessian
	7.5 Automatic Differentiation
	7.6 Sharper Bounds Using Taylor Expansions
	7.7 Expansions Using Slopes
	7.8 Slopes For Irrational Functions
	7.9 Multidimensional Slopes
	7.10 Higher Order Slopes
	7.11 Slopeexpansionsofnonsmoothfunctions
	7.12 Automatic Evaluation Of Slopes
	7.13 Equivalent Expansions

	DKE232_CH08.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 8: Quadratic Equations And Inequalities
	8.1 Introduction
	8.2 A Procedure
	8.3 The Steps Of The Algorithm

	DKE232_CH09.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 9: Nonlinear Equations Of One Variable
	9.1 Introduction
	9.2 The Interval Newton Method
	9.3 A Procedure When
	9.4 Stopping Criteria
	9.5 The Algorithm Steps
	9.6 Properties Of The Algorithm
	9.7 A Numerical Example
	9.8 The Slope Interval Newton Method
	9.9 An Example Using The Slope Method
	9.10 Perturbed Problems

	DKE232_CH10.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 10: Consistencies
	10.1 Introduction
	10.2 Box Consistency
	10.3 Hull Consistency
	10.4 Analysis Of Hull Consistency
	10.5 Implementing Hull Consistency
	10.6 Convergence
	10.7 Convergence In The Interval Case
	10.8 Splitting
	10.9 The Multidimensional Case
	10.10 Checking For Nonexistence
	10.11 Linear Combinations Of Functions
	10.12 Proving Existence
	10.13 Comparing Box And Hull Consistencies
	10.14 Sharpening Range Bounds
	10.15 Using Discriminants
	10.16 Nonlinear Equations Of One Variable

	DKE232_CH11.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 11: Systems Of Nonlinear Equations
	11.1 Introduction
	11.2 Derivation Of Interval Newton Methods
	11.3 Variations Of The Method
	11.4 An Inner Iteration
	11.4.1 A Post-newton Inner Iteration

	11.5 Stopping Criteria
	11.6 The Termination Process
	11.7 Rate Of Progress
	11.8 Splitting A Box
	11.9 Analytic Preconditioning
	11.9.1 An Alternative Method

	11.10 The Initial Box
	11.11 A Linearization Test
	11.12 The Algorithm Steps
	11.13 Discussion Of The Algorithm
	11.14 One Newton Step
	11.15 Properties Of Interval Newton Methods
	11.16 A Numerical Example
	11.17 Perturbedproblemsandsensitivityanalysis
	11.18 Overdetermined Systems

	DKE232_CH12.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 12: Unconstrained Optimization
	12.1 Introduction
	12.2 An Overview
	12.3 The Initial Box
	12.4 Use Of The Gradient
	12.5 An Upper Bound On The Minimum
	12.5.1 First Method
	12.5.2 Second Method
	12.5.3 Third Method
	12.5.4 Fourth Method
	12.5.5 An Example

	12.6 Updating The Upper Bound
	12.7 Convexity
	12.8 Using A Newton Method
	12.9 Termination
	12.10 Bounds On The Minimum
	12.11 The List Of Boxes
	12.12 Choosing A Box To Process
	12.13 Splitting A Box
	12.14 The Algorithm Steps
	12.15 Results From The Algorithm
	12.16 Discussion Of The Algorithm
	12.17 A Numerical Example
	12.18 Multiple Minima
	12.19 Nondifferentiable Problems
	12.20 Finding All Stationary Points

	DKE232_CH13.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 13: Constrained Optimization
	13.1 Introduction
	13.2 The John Conditions
	13.3 Normalizing Lagrange Multipliers
	13.4 Use Of Constraints
	13.5 Solving The John Conditions
	13.6 Bounding The Lagrange Multipliers
	13.7 First Numerical Example
	13.8 Second Numerical Example
	13.9 Using Consistency

	DKE232_CH14.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 14: Inequality Constrained Optimization
	14.1 Introduction
	14.2 The John Conditions
	14.3 An Upper Bound On The Minimum
	14.4 A Line Search
	14.5 Certainly Strict Feasibility
	14.6 Using The Constraints
	14.7 Using Taylor Expansions
	14.8 The Algorithm Steps
	14.9 Results From The Algorithm
	14.10 Discussion Of The Algorithm
	14.11 Peeling
	14.12 Pillow Functions
	14.13 Nondifferentiable Functions

	DKE232_CH15.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 15: Equality Constrained Optimization
	15.1 Introduction
	15.2 The John Conditions
	15.3 Bounding The Minimum
	15.4 Using Constraints To Bound The Minimum
	15.4.1 First Method
	15.4.2 Second Method

	15.5 Choice Of Variables
	15.6 Satisfying The Hypothesis
	15.7 A Numerical Example
	15.8 Using The Upper Bound
	15.9 Using The Constraints
	15.10 Information About A Solution
	15.11 Using The John Conditions
	15.12 The Algorithm Steps
	15.13 Results From The Algorithm
	15.14 Discussion Of The Algorithm
	15.15 Nondifferentiable Functions

	DKE232_CH16.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 16: The Full Monty
	16.1 Introduction
	16.2 Linear Systems With Both Inequalities And Equations
	16.3 Existence Of A Feasible Point
	16.3.1 Case 1
	16.3.2 Case 2
	16.3.3 Case 3

	16.4 The Algorithm Steps

	DKE232_CH17.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 17: Perturbed Problems And Sensitivity Analysis
	17.1 Introduction
	17.2 The Basic Algorithms
	17.3 Tolerances
	17.4 Disjoint Solution Sets
	17.5 Sharp Bounds For Perturbed Optimization Problems
	17.6 Validating Assumption 17.5.1
	17.7 First Numerical Example
	17.8 Second Numerical Example
	17.9 Third Numerical Example
	17.10 An Upper Bound
	17.11 Sharp Bounds For Perturbed Systems Of Nonlinear Equations

	DKE232_CH18.pdf
	Global Optimization Using Interval Analysis
	Contents
	Chapter 18: Miscellany
	18.1 Nondifferentiable Functions
	18.2 Integer And Mixed Integer Problems

	DKE232_REF.pdf
	Global Optimization Using Interval Analysis
	Contents
	References

	Copyright_Right:
	Bottom:

